
System Design Frontier Journal
Featured Column

Why Do We Resist Testing?

Orit Hazzan and Uri Leron
Department of Education in Technology and Science

Technion - Israel Institute of Technology
{ oritha, uril } @tx.technion.ac.il

Work with human nature, not against it.
Kent Beck (2000, p. 116) on testing.

1. Introduction

The difficulties with software testing are well-known and well-documented; and they are
unsettling: Every-body agrees that proper software testing is essential, yet there is not enough of
it, and what there is, is not good enough. On both the individual and the team levels, a prevalent
phenomenon of testing resistance can be observed. For example, Van Vliet (2000) states that "the
testing activity often does not get the attention it deserves. By the time the software has been
written, we are often pressed for time, which does not encourage thorough testing. […]
Postponing test activities for too long is one of the most sever mistakes often made in software
development projects. This postponement makes testing a rather costly affair. (p. 386-387).
Hamlet and Maybee (2001) speculate that "maybe the reason testing is not always thought of as
fun is that there's a flip side: the program may not work." (p. 397). Why do we resist testing, and
why is testing resistance so hard to overcome?

In this column we try to offer an explanation by putting testing resistance in a wider context
than just software development, starting with Karl Popper’s view of the scientific method,
moving to the so-called confirmation bias from cognitive psychology, and ending with human
nature as re-defined in evolutionary psychology. By widening the scope we hope to gain better
understanding, but will it lead to any applicable conclusions? In the last section we suggest that
this understanding lends support to some of the solutions offered in the industry, especially test-
driven development. Improvising on the Beck quotation at the top, we will propose that human
nature is not all of a kind, and that we can enlist one part to help overcome a weakness in
another.

2. Testing and the scientific method

One way to understand testing resistance is to think of your code as hypothesis, and of testing
as trying to refute your hypothesis. To be specific: You have some expectations (or
specifications) for how your code is supposed to behave, and the code you write expresses the
hypothesis that it will indeed behave as intended. Testing, then, is an attempt to find
disconfirming evidence for this hypothesis. This brings to mind Karl Popper’s (1992/1959) view
of the scientific method. On this view, the scientific method consists not of confirming the

scientist’s hypotheses, but rather of trying to find disconfirming evidence, and of looking for
refinements or for alternative hypotheses that will better withstand the refutation attempts. In
other words, scientists are busy debugging their hypotheses. This analogy is further borne out by
the almost identical claims by Dijkstra (1972) ("Program testing can be used to show the
presence of bugs, but never to show their absence!") and by Popper (a scientific hypothesis can
only be empirically falsified but never fully verified 1).

Can this analogy help us understand testing resistance? We think it can. Starting at the 1960’s,
Wason and others conducted experiments that showed that people are not naturally Popperian,
that is, they tend to look for confirming evidence for their hypotheses, and they avoid looking for
alternative hypotheses and for disconfirming evidence.

[Peter Wason] saw a key component of scientific thinking as being the testing of
hypotheses. […] Wason focused on whether people adopt a strategy of trying to confirm
or disconfirm their hypotheses. Using Popper's (1959) theory that scientists should try and
falsify rather than confirm their hypotheses, […] Wason concluded that people try and
confirm their hypotheses, whereas normatively speaking, they should try and disconfirm
their hypotheses. One implication of this research is that confirmation bias is not just
restricted to scientists but is a general human tendency. (Dunbar and Fugelsand, 2005, p.
707).

In the last 30 years or so, an extensive research program on judgment and decision making –
the heuristics and biases program – was carried out by the cognitive psychologists Kahneman
and Tversky (1982), for which Kahneman received the 2002 Nobel Prize in economics (2002). In
this program they catalogued and explained a long list of biases, that is, “cognitive illusions” (in
analogy with the well-known optical illusions), which are situations in which most people react
in ways that do not conform to the standards of logic, mathematics or statistics. Some researchers
(and most of the popular media) took these findings as showing that people are “irrational”, but
this conclusion was hotly debated by others who claimed that these are simply not the right
norms for judging rationality. To avoid going into this argument (fascinating though it is; see e.g.
Stein, 1996) it has become customary to refer to this kind of responses as non-normative. One of
the items on this catalogue, and the one most relevant to our discussion, is the confirmation bias.

[…] philosophers, historians, and experimental psychologists have devoted a
considerable amount of research to "confirmation bias." This occurs when scientists
consider only one hypothesis (typically the favored hypothesis) and ignore alternative
hypotheses or other potentially relevant hypotheses. This important phenomenon can
distort the design of experiments, formulation of theories, and interpretation of data.
Beginning with the work of Wason (1968) […], researchers have repeatedly shown that
when participants are asked to design an experiment to test a hypothesis, they
predominantly design experiments they think will yield results consistent with the
hypothesis. […]

1 This is our own synopsis. Compare e.g., “Agreement [of hypothesis and testing] is taken as corroboration of the

hypothesis, though not as final proof; clear disagreement is considered as refutation or falsification". (Popper,
2002/1957, pp. 132-133).

Confirmation bias is very difficult to overcome. Even when participants are asked to
consider alternate hypotheses, they often fail to conduct experiments that could
potentially disconfirm their hypothesis. (ibid, p. 709)

Thus it can be seen that we, with our testing resistance, are in good company. If testing
software is like looking for disconfirming evidence for one’s hypo-theses, then we can see that
we share this resistance with the entire scientific community and in fact with most human beings.
In this sense, Beck (2000, see opening statement) is indeed correct in claiming that testing goes
“against human nature”.

3. Is testing against human nature?

To say, as we did in the last section, that people resist testing doesn’t mean that it can’t be
done. It only means that it doesn’t come naturally, and that we have to invest some conscious
effort to overcome this resistance. We are thus led to consider the relationship between thinking
and behavior that come to us naturally, or intuitively, and that which requires conscious effort
and analytical tools.

Just as we placed testing resistance itself in the context of scientific thinking, we will now try
to understand overcoming the resistance in the context of a recent influential theory of intuitive
thinking from cognitive psychology, called dual-process theory. According to this theory, our
cognition operates in parallel in two quite different modes, called System 1 (S1) and System 2
(S2), roughly corresponding to our common sense notions of intuitive and analytical thinking.
These modes operate in different ways, are activated by different parts of the brain, and have
different evolutionary origins (S2 being evolutionarily more recent and, in fact, largely reflecting
cultural evolution). S1 processes are characterized as being fast, automatic, effortless, “cheap” in
terms of working memory resources, unconscious, and inflexible (hard to change or overcome).
In contrast, S2 processes are slow, conscious, effortful, fully engage the working memory
resources, and relatively flexible. In addition, S2 serves as monitor and critic of the fast
automatic responses of S1, with the “authority” to override them when necessary. In many
situations, S1 and S2 work in concert, but there are situations in which S1 produces quick
automatic non-normative responses, while S2 may or may not intervene in its role as monitor and
critic. For an accessible survey of the heuristics and biases research, including dual-process
theory, see e.g., Kahneman, 2002. See Leron & Hazzan (in press) for similar phenomena in
advanced mathematics thinking.

In terms of dual-process theory, we might say that testing resistance resides in S1, but that it’s
S2’s job to overcome it. We know from the research literature that S2 does not continuously
monitor S1 and that, in fact, it often remains dormant and fails in this role. In Kahneman’s
words:

[This] illustrates how lightly the output of System 1 is monitored by System 2: people are
not accustomed to thinking hard, and are often content to trust a plausible judgment that
quickly comes to mind. (2002, pp. 451-452)

From this perspective, we can interpret Massimo Arnoldi (in Beck, 2000, p. 116):

Unfortunately at least for me (and not only) testing goes against human nature. If you
realize the pig in you, you will see that you program without tests. Then after a while,
when your rational part wins, you stop and you start writing tests.

This quote can actually be interpreted as being about dual system: “If you realize the pig in you
[S1] … you program without testing. … when your rational part wins [S2] … you start writing
tests.”

We now move to consider the question at the head of this section. We take from the young
discipline of evolutionary psychology (EP) the scientific view of human nature as a collection of
universal, reliably-developing, cognitive and behavioral abilities – such as walking on two feet,
face recognition, and the use of language – that are spontaneously acquired and effortlessly used
by all people under normal development, independently of culture, race, geography or education
(Cosmides and Tooby, 1992, 1997; Pinker, 1997, 2002; Ridley, 2003). In contrast, walking on
two hands or using a programming language are not part of human nature – not because they are
impossible to learn, but because they are only learned by a few individuals with special
motivation and training.

We also take from EP the evolutionary origins of human nature, hence the frequent mismatch
between the ancient ecology of our hunter-gatherer ancestors to which it is adapted and the
demands of modern civilization. To the extent that we do manage to learn many modern skills
(such as writing or driving, programming, or mathematics), according to EP, this is because of
our mind’s ability to “co-opt” ancient cognitive mechanisms for new purposes (Bjorklund and
Pellegrini, 2002; Geary, 2002). But this is easier for some skills than for others, and the ease of
learning in such cases is determined by the availability and accessibility of the co-opted cognitive
mechanisms.

We have previously placed “confirmation bias” – hence testing resistance – within S1, which
would indeed make it part of human nature, since S1 is universal and “reliably developing”.2 In
this sense, working against testing resistance is indeed, as in Kent’s words, working against
human nature. However, the existence of the “cognitive monitor” in our S2 is also part of human
nature (though the specific skills of S2 are mostly not). As in other complex cognitive tasks, we
can set this monitor to help us overcome the (S1) weakness in our nature. Hence our own
elaboration of Beck’s admonition: Employ one part of human nature to overcome a weakness in
another.

4. Why Test Driven Development works?

We have argued that testing resistance is a special case of confirmation bias – the propensity to
look for confirming evidence for one’s hypothesis, and avoid looking for disconfirming evidence.
The remarkable insight behind Test Driven Development (TDD) (though its developers may not
have thought of it in those terms) is that by incorporating testing into the development, testing
becomes part and parcel of “the hypothesis”, and is no longer conceived as a search for
disconfirming evidence. TDD thus helps developers avoid confrontation with this deep-seated
confirmation bias, indeed it helps working “with human nature, not against it”.

2 We are referring here only to the universal parts of S1, excluding specific skills that migrate to S1 of specific

individuals due to specialized expertise and training.

We have also seen that testing is a function of our S2 cognitive monitor, but that the monitor is
not easily kept alert at all times. We propose that here too TDD may come to the rescue, since
writing test prior to the code helps keep S2 on the alert.

5. References

Beck, K. (2000). Extreme Programming Explained, Addison-Wesley.

Bjorklund, D.F., and Pellegrini, A.D. (2002) The Origins of Human Nature: Evolutionary
Developmental Psychology, American Psychological Association Press.

Cosmides, L. and Tooby, J. (1992). Cognitive Adaptations for Social Exchange, In Barkow, J.,
Cosmides, L., and Tooby, J. (Eds.), The Adapted Mind: Evolutionary Psychology and the
generation of Culture, Oxford University Press, 163-228.

Cosmides, L. and Tooby, J. (1997) Evolutionary Psychology: A Primer, retrieved 24 October
2004, from http://www.psych.ucsb.edu/research/cep/primer.html.

Dijkstra, E.W. (1972). Notes on structured programming, in O.J. Dahl et al. (ed.), Structured
Programming, Academic Press, London, pp. 1-82.

Dunbar, K. and Fugelsand, J. (2005). Scientific thinking and reasoning. In Keith J. Holyoak &
Robbert G. Morrison (eds.), The Cambridge handbook of thinking and reasoning, Cambridge
University Press, Ch. 29, pp, 705-725.

Geary, D. (2002). Principles of Evolutionary Educational Psychology, Learning and individual
differences, 12, 317-345.

Hamlet, D. and Maybee, J. (2001). The Engineering of Software, Addison Wesley.

Kahneman, D. (Nobel Prize Lecture, December 8) (2002). Maps of bounded rationality: A
perspective on intuitive judgment and choice, in Les Prix Nobel, T. Frangsmyr (ed.), pp. 416-
499. Also accessible at http://www.nobel.se/economics/laureates/2002/kahnemann-lecture.pdf

Kahneman, D., Slovic, T. & Tversky, A (1982). Judgment Under Uncertainty: Heuristics and
Biases, Cambridge University Press.

Leron, U. and Hazzan, O. (in press). The Rationality Debate: Application of Cognitive
Psychology to Mathematics Education to appear in Educational Studies in Mathematics.

Pinker, S. (1997). How the Mind works, Norton.

Pinker, S. (2002). The Blank Slate: The Modern Denial of Human Nature, Viking.

Popper, K. R. (2002/1957) The Poverty of Historicism . Rooutledge.

Popper, K. R. (1992/1959). Logic of Scientific Discovery, New York: Harper and Row.

Ridley, M. (2003). Nature via Nurture: Genes, experience, and what makes us human, Harper
Collins.

Stein, E. (1996). Without Good reason: The Rationality Debate in Philosophy and Cognitive
Science, Oxford

Van Vliet, H. (2000). Software Engineering – Principles and Practices, Wiley.

