
Agile Anywhere –
Essays on Agile Projects and Beyond

Orit Hazzan

Yael Dubinsky

Author’s version

Springer website: http://www.springer.com/gp/book/9783319101569
DOI: 10.1007/978-3-319-10157-6

http://www.springer.com/gp/book/9783319101569

1 Introduction to Agile Anywhere

1.1. Overview

We wish to be more agile. Agility is a concept that people, teams, organizations
wish to be proud of as one of their traits. The message we convey in this book is
that Agility can be implemented Anywhere, and accordingly, we present ten
guidelines for the adoption of agility that enable to cope with changes in our life,
in our team, in our organizations.

Since we advocate agility, we publish Agile Anywhere as a Springer Briefs,
which includes concise standalone chapters that enable the readership to focus on
the specific topic they wish to adopt in order to become agile.

1.2. Agile Guidelines

Based on our experience of about twelve years of implementing agile practices in
different projects and organizations, as well as in our daily life, we present ten
Agile Guidelines for Agile Lifestyle to cope with change. We categorize them into
three groups: characteristics, behavior, and emotions.

Change characteristics
1. Time. Change/improvement takes time; you can’t accelerate it: There is a

vision to achieve and a way to go; it takes time to understand the needed
process and to apply it.

2. Stability. In order to pursue a change process, a stable infrastructure is
needed; a change process cannot be initiated in a mess.

3. Pace. Complex changes are achieved based on small changes; the complexity
of a change process is increased by small changes.

4. Scope. Effect spreads in stages like a stone thrown into a lake; at the
beginning the change is local; gradually, the radius of the effect cycles of the
change increases.

Behavior while changing
5. Generative. Only one thing (can be composed of several smaller things) is

changes at a time; keep all the other things constant to highlight the current
change, its effect and how to proceed.

6. Reflective. Summary and reflection are needed before proceeding to the next
change; they are part of the change process and should not be skipped.

7. Corrective. Avoidance of harm effects; welcome the identification of
deviations, mistakes, misconceptions earlier as possible and manage their
risk.

Change emotions

8. Trust. Clarity and transparency deliver quality and foster trust; people trust
you when the process is managed professionally and the environment
supports the continuation of the change process.

9. Feedback. Feedback is important; pain should be conceived as a positive
signal since it indicates where a change is needed.

10. Confidence. Do not worry (and even enjoy) from uncertainty and unexpected
events – they are the basic key and indicators of a successful change.

As we see in this book, we cope with change in a wide range of situations:
from daily general-purpose tasks to complex system development projects. The
Agile Guidelines enable us to plan and analyze change processes and steer our
route by joining the Change.

2 From 1st to 2nd Edition

2.1. Overview

In the introductory chapter of the first edition of this book, published in 2008, we
asked questions such as What is agile software development? Why is an agile
perspective at software engineering needed? What are the main characteristics of
agile software development? What can be achieved by agile software development
processes? Does agile software development form a pleasant and professional
software development environment?

Such questions are now irrelevant since during the past decade agile
software development has become a mainstream approached for managing
software development processes. A new trend we witnessed recently is agility
anywhere – in many organizations agility is used today in many areas, not only in
software development processes. This is the message of this Brief. We highlight
the perspective that agility is not limited anymore to software projects, but, rather,
it is a lifestyle. Therefore, we decided to call the second edition of our book Agile
Anywhere.

In this chapter we present our Human-Organizational-Technological
(HOT) framework which we extensively used in our 1st edition, and show how it
also fits the Agile Anywhere point of view (Hazzan & Dubinsky, 2010);
specifically, by replacing Technological with Thematic, the Human-
Organizational-Thematic (HOT) framework deals with all change scenes
(software, human resources, research, education, climate and more). We illustrate
this idea using the theme of education and analyze the Finnish education system,
known to be one of the best in the world, from the agile perspective.

2.2. Three Perspectives at Software Engineering

Software engineering is the profession that applies scientific knowledge in the
construction of software products needed by customers. The scientific knowledge
in the case of software engineering is mathematics, computer science and the
specific domain that the developed software deals with. In order to achieve their
targets, software practitioners should be provided with professional tools for how
to apply their knowledge. Different approaches towards the application of
software engineering processes exist; among them, Agile Anywhere focuses on the
agile approach.

One of the basic tools that practitioners need in order to accomplish their task is
a well-defined engineering process laid out by a software development method. A
software development method is a set of activities and practices, as well as roles

and norms of behavior, derived from a set of professional aims, which are carried
out in a logical and specified order.

A software development method should address not only technological aspects,
but rather, it should refer also to the work environment and the professional
framework. Accordingly, agile software engineering is reviewed in our book
Software Engineering book (Hazzan and Dubinsky 2008) within the HOT
framework by following the following three perspectives:

• The Human perspective, which includes cognitive and social aspects, and
refers to learning and interpersonal (teammates, customers, management)
processes.

• The Organizational perspective, which includes managerial and cultural
aspects, and refers to the workspace and issues that spread beyond the team.

• The Technological perspective, which includes practical and technical aspects,
and refers to how-to and code-related issues.

Specifically, we explain how the attention that agile software development
gives these aspects helps coping with challenges of software projects. Figure 2.1
presents schematically the HOT analysis framework in the theme of software
engineering.
Fig. 2.1. The HOT analysis framework for software engineering (as in our 1st edition)

.
Following our Agile Anywhere approach, we updated this framework to

be Human-Organizational-Thematic (HOT) framework which can be applied to all
projects with any theme, e.g., technology, education, discipline (e.g., medical,
mechanics), research, etc, as shown in Figure 2.2.

Software
Engineering

Human
perspective

Technological
perspective

Organizational
perspective

Fig. 2.2. The HOT analysis framework for any theme

2.3. Education in Finland from the Agile Anywhere Perspective

The Finnish education is known to be one of the best in the world. In this section
we show how the Finnish education system is managed as an agile project.
Specifically, we illustrate some of the principles of the Finnish education system
form the agile perspective according to the above three perspectives: Human,
organizational and thematic. In addition, we ask whether the success of the
Finnish education system can be explained by the claim that it applies agile
principles.

Thematic perspective
Teachers as researchers: Finnish teachers are committed to the continuous

improvement of teaching. Thus, they spend only a few hours per day teaching
and engage in research, self-examination, reflective processes, and preparation
for the next day during the remaining hours of their work day. This
organization of the work day also enables teachers to complete their school
work at school and so they do not have to continue working at home. The agile
approach involves a similar process: as mentioned above, working time itself is
restricted to a certain number of hours per day that are utilized in an optimal
manner. The rest of the time is spent for learning, analyzing the process, and
conducting reflective processes in which the team analyzes both the process
itself and ways to improve it.

Peer teaching: Part of the learning process in Finland is conducted by students
who teach other students, so that the teachers are not, in fact, the sole and main

Any
Thematic
Oroject

Human
perspective

Thematic
perspective

Organizational
perspective

http://www.youtube.com/watch?v=mJeSH8ctdpg&feature=youtube_gdata_player&noredirect=1
http://agilemanifesto.org/

source of knowledge. This is the case in agile projects as well: each and every
member of the team specializes in a certain subject or area and teaches it to the
other team members so that all team members are both learners and teachers. In
other words, mechanisms exist both in the Finnish education system and in
agile environments that support the sharing and management of knowledge
whereby the students (in Finnish schools) and team members (in agile projects)
share their knowledge with their peers.

Team work: Team work is one of the basic principles of Finnish education; it is
also one of the basic principles of the agile approach. The entire team sits in a
single room that contains all of the information required for the project. It
seems that this teaching method enables the Finnish education system to turn
the profession of teaching, from an "industrial" profession that is based on
imparting a certain amount of material within a certain number of hours to as
many students as possible, into a profession that is more "clinical" in nature, in
which each student receives a greater amount of personal attention.

Organizational perspective
Fewer school hours: Children in Finland spend fewer hours at school than do

children in many other Western countries, yet they achieve better results. These
results are apparently attained by utilizing the school hours in a way that
encourages significant learning processes. Indeed, it is apparent that in Finland,
students are active, they improve their skills, and teach each other in classes of
15 students and two teachers—another feature that enables the teachers to give
each student more personal attention. This is also the situation in agile projects.
Efficient time management in agile environments supports the production of
higher quality deliverables in a limited, relatively smaller number of working
hours per day, as opposed to the practice of working long hours under other
management methods.

Self-managed teams: In Finland, the teachers determine how to achieve the
objectives of the education system and develop curricula designed to attain
these goals; the education system provides them with the required means to do
so. Agile teams conduct themselves in a similar manner: the objectives are
defined, but the manner in which tasks are allocated and the course of the
process itself are not pre-dictated. In other words, the teams manage
themselves. This concept is based on the working assumption that team
members are professionals and that their work does not need to be supervised.
In Finland, teachers do not need to be supervised either. This approach, which
eliminates the supervision tier and minimizes administration and bureaucracy,
enables to better utilize resources. In Finland this is manifested also in social
justice, small social gaps, and a society that grants everyone the same right to
education.

Early identification of problems: In Finnish education this concept refers to the
early identification of struggling students who are then allocated special
resources. This approach enables problems to be addressed before they are
aggravated and require even greater resources. Early identification of problems

is also one of the more important principles of the agile approach and is
manifested in testing that begins already as much as possible at the early stages
of the process. In fact, the importance attributed to early identification of
problems reflects a serious attitude towards risk management: a failing
education system can affect the future of a country; poor-quality deliverables
can affect the profitability of a company.

Human perspective
Trust: The Finnish education system has trust in its students; for instance,

homework is not checked. In addition, Finnish teachers trust their colleagues,
principals trust their teachers, and in general, the education system is based on
trust relations that encourage everyone involved in it, both students and
teachers, to assume responsibility. Similarly, one way to explain the success of
the agile approach is that this management method enhances the trust that the
various interested parties have in one another by making the project
environment transparent to all—clients and team members, management and
teams, team members and one another. It seems that this behavior pattern
ultimately leads to better results, whether it is applied in the Finnish education
system or in other projects that are managed in an agile manner.

Thus, several characteristics of the Finnish educational system are similar
to the principles of the agile approach as well, and at the same time both systems –
the Finnish educational system and the agile management approach – are
considered to be successful. The question raised is: can the success of the
educational system be explained by the agile approach? Or maybe it is the other
way around: maybe the success of the Finnish educational system can explain the
success of agility in development processes.

In this context it is interesting to note that in Finland, like in other
Scandinavian countries, agile software development is very common. When one
understands the Finnish educational system, it is easier to understand why agile
work methods are so easily assimilated there.

In the spirit of the agile approach, it should be remembered that not
everything is perfect in the Finnish educational system, and that the education
"recipe" that works so well there should not simply be copied and applied
elsewhere without review and examination. In fact, the same recommendation is
valid when adopting the agile approach: organizations wishing to adopt the agile
approach must adapt the practice to the place and time in which it is applied.

2.4 Summary

In this chapter, we convey the message that agile principles can be applied in any
environment that wished to deliver quality, let it be an education system, research

project (Tozik & Hazzan 2014) or human resources project. Thus, we establish
our assertion that Agility Anywhere is applicable even in systems that traditionally
are not conceived as projects.

2.5 References

Hazzan O, Dubinsky Y(2008) Agile Software Engineering. Springer.
Hazzan, O, Dubinsky, Y (2010) A HOT - Human, Organizational and Technological -

framework for a Software Engineering course, Proc/ of the ACM/IEEE 32nd International
Conf. of Software Engineering (ICSE 2010), Cape Town, South Africa, 559-566.

Tozik S, Hazzan O.(May 14, 2014) Agile research, InfoQ, http://www.infoq.com/articles/agile-
academic-
research?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=
global .

http://www.infoq.com/articles/agile-academic-research?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=global
http://www.infoq.com/articles/agile-academic-research?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=global
http://www.infoq.com/articles/agile-academic-research?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=global
http://www.infoq.com/articles/agile-academic-research?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=global

3 The Agile Manifesto

3.1. Overview

This chapter introduces the main ideas that form the basis for the agile approach.
Originally, the agile approach offers a professional approach for software
development that encompasses human, organizational and technological aspects of
software development processes. The main ideas of agile software development
processes were first introduced by the Agile Manifesto, and second by presenting
specific agile practices that enable agile teams to accomplish their development
task on high quality.

In the chapter we present the Agile Manifesto as was published for software
development and shows how it can be implemented for any projects.

3.2. The Agile Manifesto

Figure 3.1 presents the Agile Manifesto. It was formulated by seventeen software
practitioners, who gathered together in February 2001 in the Wasatch Mountains
of Utah, in order to find common ground for their perceptions of software
development processes and to formulate what is common to what some of them
have already implemented in different software organizations. The outcome of
that meeting was the Agile Manifesto, which presents an alternative approach for
software development processes than the approaches that had been applied during
the past 40 years, from the early stages of the development of complex software
systems.

Fig. 3.1. Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

The mere formulation of the Agile Manifesto implies that thought there are
agreed upon, common and shared principles and ideas, this common basis can be
applied differently by specific development methods. Indeed, the Agile Manifesto
is applied by different agile methods, such as Extreme Programming (Beck, 2000)
SCRUM (Schwaber 2004), Lean (Poppendieck & Poppendieck 2003), DSDM,
Adaptive Software Development, Crystal and others.

In what follows we examine the Agile Manifesto.

3.2.1 Individuals and interactions over processes and tools

This principle guides us to focus on the individuals involved in the development
process rather than on the process and/or the tools. In practice, this principle
guides software practitioners to give high priority to the people who participate in
the development process as well as to their interaction and communication, when
they develop, interact, think, discuss and make decisions with respect to different
issues related to the software development process and environment. In other
words, according to this principle, one of the first considerations that should be
taken into account when a decision related to the development process is made, is
the influence of the decision's outcome on the people who are part of the
development environment as well as on their relationships and communication.

For example, instead of investing efforts in the maintenance of a development
method by using state-of-the-art hard-to-use tools, that specify difficult-to-follow
procedures that their output is useless, efforts should be channeled to the
construction of a development environment that enables each of the participants
(teammates, customers, management) to understand the development process, to
become part of it, to contribute to it and to collaborate with all the other project
stake holders.

3.2.2 Working software over comprehensive documentation

This principle delivers the message that the main target of software projects is to
produce quality software products. This idea has three main implications.

First, agile software development focuses on the development itself and the
creation of only these documents that are needed for the development process.
Some of these essential documents, according to their characteristics and
usefulness, are posted on the wall of the agile collaborative workspace so that they
will be accessible to all the project stake holders all the time.

Second, agile software development processes start the product actual
development (that is, coding) as soon as possible in order get some sense of the
developed product. This early development enables the teammates and the

http://www.amazon.com/Mary-Poppendieck/e/B001IGNU3O/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Tom%20Poppendieck&ie=UTF8&search-alias=books&sort=relevancerank

customer to improve their understanding of the developed product and to proceed
with the development process on a safer ground.

Third, from the customers' perspective, this principle advocates that customers
should get a bug-less high quality product that meets their requirements. This, of
course, has direct implication on quality-related activities that agile teams
perform.

As can be seen, this principle supports the first principle of the agile manifesto,
by binding the people who participate in the development process with the actual
development process. Such a connection inspires a culture in which software
quality is one of its main values.

The importance of this principle is highlighted when its implications are
compared with development processes which postpone either the beginning of the
development stage (sometimes in several years) or the product quality-related
activities (mainly testing). In the first case, the fact that the project production
starts only after a lot of documentation has been produced, that presumably, but
not in practice, captures all the customer requirements, neglects the reality that
software development processes are characterized by many changes and are based
on a gradual learning process. As a result, in many cases, development processes
that prepare in advance a lot of documentation without starting the actual
development, do not provide eventually the customer with the needed system and
in practice, inconsistencies exist between the project documentation and the actual
product. In the second case, the postponement of the quality-related activities
leads to a situation in which the practitioners involved in the development process
cannot cope successfully with the complexity of the testing activity both from a
cognitive and managerial perspectives.

3.2.3 Customer collaboration over contract negotiation

This principle changes the perception of the customer role in software
development processes. It guides agile software development methods to base the
development process on an on-going and on a daily basis contract with the
customer. Such a close contract with the customers enables to cope successfully
with the frequent changes that characterize software projects. This principle also
points at a conception change with respect to the nature and formulation of
software product contracts.

Human relationships, mainly between the customer and the management, are
emphasized by this principle of the manifesto. These relations have, in turn, direct
implications of the development team, which should employ specific practices to
ensure these kinds of relationships and communication. These practices, when
employed on a daily basis, influence directly the culture of agile organizations.

Thus, by referring to contract- and communication-related issues that aims at
ensuring that the customer gets the desired product, this principle of the Agile
Manifesto further supports the second principle of the agile manifesto.

3.2.4 Responding to change over following a plan

This principle guides agile software development methods to establish a
development process that copes successfully with changes that are introduced
during the development process, without compromising the high quality of the
developed product. The rationale for this principle is derived from the recognition
that customers cannot predict a-priori all their requirements; therefore, a gradual
process, by which the requirements are understood by the customer and are
delivered to and shared with the team, should be established. Accordingly, agile
software development methods inspire a process that enables to introduce changes
in the developed product, that emerged based on an improved understanding of the
software requirements, without necessarily increasing the cost of change
introduction.

3.3 Application to Agile Projects

Based on common understandings encapsulated by the Agile Manifesto, the agile
approach is applied by several basic practices that support any projects (with the
modifications according to the theme of the project). In this section, some of these
practices are introduced.

Whole team. The practice of Whole Team means that the project team (including
all role holders and the customer) communicate in a face-to-face fashion as much
as possible. It is applied in several ways.

First, the development team is co-located in a collaborative workspace – a
space which supports and facilitates communication. Second, all team members
participate in all the product presentations to the customer, hear the customer
requirements and are active in the actual process planning. Third, role holders, that
traditionally belong to separate teams (e.g., testers and designers), are integrated
into the team and process.

On a daily bases, each day, during the working hours, the team is located in one
space; in addition, each team member has a private space for personal tasks and
professional tasks that should be carried out individually and personally. The
walls of the development workspace serve as a communication means,
constituting an informative and collaborative workspace. Thus, all the project
stake holders can be updated at a glance at any time about the project progress and
status. In addition, the entire team holds daily stand-up meetings, which usually
take place in the morning. In these meetings, each team member presents in 2-3
sentences the status of his or her tasks and what he or she plans to do during the
day to come, both with respect to the tasks and the personal role.

Short releases. Agile processes are based on short releases (of about two months),
divided into short iteration of one or two weeks, during which the scope of what
has been decided to be delivered in the said iteration is not changed. At the end of
each iteration the deliverable is presented to the customer and the customer
provides feedback to the team and sets the requirements to be delivered in the next
iteration.

The detailed plan of each short iteration is carried out during a business day
which is specifically allocated for this purpose at the beginning of each iteration.
In the business day all the project stake holders participate – customer, team
members, users, management representatives, representative of related projects,
and so on. The business day includes three main parts: a presentation of what was
delivered in the previous iteration along with any relevant measures taken, a short
reflective session in which the project process performed so far is analyzed and
lessons are learnt, and the actual planning of the next iteration. At the end of the
business day, a balanced workload is ensured among all team members.

 The nature of the activities that take place during the business day, and the
fact that a business day takes place every week or two weeks, enable all the
project stake holders to construct their knowledge related to the project deliverable
and process gradually, based on what they see, hear and perform during each
iteration. Specifically, during this process, the teammates improve their
understanding of what should be performed, mainly due to the fact that they hear
the requirements directly from the customer during the planning session.

Time estimations. In agile projects two important practices are performed with
respect to time estimation. First, the teammate, who is in charge of a specific task,
also estimates the time needed for it; this practice increases the team member's
responsibility and commitment to the project. Second, tasks are formulated in a
way that their time estimation is possible to be set in hour resolution. This fact is
important because the greater a task is, the harder it is to estimate it, and vise
versa: the smaller the segment estimated, the more accurate its time estimation is.
Consequently, the progress pace can be planned more precisely. This inspires a
culture that delivers the message that plans can be set and followed in such a way
that deadlines should not be postponed.

From the team perspective, since time estimations are performed at the
business day with full team attendance, all teammates know what each team
member has committed to in terms of tasks and time estimations. This fact
increases the project transparency and consequently, the teammate's responsibility
to perform well. Further, the load balance, that is ensured among all team
members, further reinforces trust and communication among team members.

Measures. The agile processes are accompanied with measures on which all the
project stake holder decide according to their needs.

Measures enable the team to improve the process, and consequently, the
deliverables. Measures also convey the message that the process should be

monitored and that this monitoring should be transparent and known to all the
project stakeholders.

Customer collaboration. The agile approach welcomes the customer to become
part of the process. The target is to get an ongoing feedback from the customers
and to move on according to their needs. This avoids the need to speculate the
customers' needs, which may lead to incorrect working assumptions.

This practice implies that in agile projects all team members have access to the
customer during the entire process. This direct communication channel increases
both the individual interaction and the chances that the requirements are
communicated correctly. Consequently, it helps the teammates to cope
successfully with changes: first, there is no need to speculate the customer's needs;
second, the overhead of dealing with change introduction at later stages is reduced
significantly.

3.4 Summary

The Agile Manifesto established a framework, based on which a cultural (Hazzan,
Seger & Luria, 2010) and organizational (Dubinsky et al, 2010; Talby &
Dubinsky, 2009) changes were introduced into the profession of software
engineering. In the spirit of this book, we propose that a similar manifesto can be
formulated for any theme, according to its specific characteristics and needs.
Nevertheless, the spirit of the actual application of agility does not change from
theme to theme

3.5 References

Beck K (2000) Extreme Programming Explained: Embrace Change. Addison-Wesley.
Dubinsky Y, Yaeli A, Kofman A (2010) Effective Management of Roles and Responsibilities:

Driving Accountability in Software Development Teams, IBM Systems J., 54(2), 4:1-4:11.
Hazzan O, Seger T, Luria G (Feb 18, 2010). How did the creators of the Agile Manifesto turn

from technology leaders to leaders of a cultural change?, AgileQ, InfoQ,
http://www.infoq.com/articles/manifesto-originators.

Poppendieck M , Poppendieck T (2003) Lean Software Development: An Agile Toolkit.
Addison-Wesley Professional

Schwaber K (2004) Agile Project Management with Scrum (Developer Best Practices. Microsoft
Press

Talby D, Dubinsky Y (2009) Governance of an Agile Software Project, 31th International
Conference of Software Engineering, ICSE, Workshop on Software Development
Governance (SDG), Vancouver, Canada

http://www.infoq.com/articles/manifesto-originators
http://www.amazon.com/Mary-Poppendieck/e/B001IGNU3O/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Tom%20Poppendieck&ie=UTF8&search-alias=books&sort=relevancerank

4 Change

4.1. Overview

In this chapter we deepen the examination of the concept of change, highlighting
the fact that the agile approach supports changes of different kinds. This
characteristic is important since changes are an inherent element of any project
and therefore should not be neglected.

In order to explain how the agile approach copes with the said change, we use
Plotkin's framework, borrowed from evolutionary theories, which describes how
the universe copes with changes over its evolution. This exploration delivers the
message that the agile approach realizes that changes are an inherent part of any
process and therefore, adopts several ways that support change embracement and
introduction instead of blocking them.

Further, in this chapter, we illustrate our Agile Guidelines referring to the book
Who Moved My Cheese? (Johnson 1998), which deals with different approaches
to change processes.

4.2. A Conceptual Framework for Change Introduction

in his book “Darwin Machines and the Nature of Knowledge”, Henry Plotkin
presents the notion of Change as part of the chapter that deals with the evolution
of intelligence.

“Change is a universal condition of the world. If the world were
unchanging, then evolution would have proceeded to some optimal point and
then ceased. This has not happened. Nothing stands still, and the very
occurrence of evolution is both a force for change itself and proof positive for
its existence” (p. 139).
The main question Plotkin poses is how we can solve the uncertainty

introduced by changes. He describes two main sets of solutions to deal with the
change phenomenon and explains how they enable to cope with changes (pp. 145-
152).

The first set of solutions concerns with 'reducing the amount of significant
change', thus reducing the change scope (left branch in Figure 4.1). One way to do
it is by reducing the period of time (branch T in Figure 4.1) between conception
and reproductive competence. It means keeping the ratio 'life-span length to
numbers of offspring' low, or, in other words, to maintain high reproductive output
in a relatively short period of time. This way, the change is coped by keeping
updated, as much as possible, the genetic instructions of each individual.

http://en.wikipedia.org/wiki/Spencer_Johnson_(writer)

The second way to reduce the amount of significant change according to
Plotkin is to live in a relatively isolated and unpopulated place (branch P in
Figure 4.1). A variation of this idea is parents' protection on their offspring by
isolating them.

Fig. 4.1. Solutions for Dealing with Change (Plotkin 1997)

The second set of solutions for the phenomenon of change takes the form of ‘if
you can’t beat it, join it’, i.e., change the phenotypes so that they can change with
and match the changing features of the world (right branch in Figure 4.1). The
first strategy to accomplish this target is to produce large numbers of different
offspring in order to increase diversity. This approach increases the chances that at
least some individuals will be able to cope with the change (branch D in Figure
4.1).

The second strategy, named the 'tracking option', enhances change within
phenotypes by producing phenotypes that change themselves in response to
changes in the world (branch K in Figure 4.1). The tracking option is supported by
knowledge-gaining devices which, according to Plotkin, are the immune system
and the brain mechanism. The immune system operates in the sphere of chemistry,
while the brain mechanisms, known as rationality or intelligence, operate in the
sphere of the physical world of temporal and spatial relationships of events and
objects.

4.2.1 Applying Plotkin's Framework on Changes in Requirements

Changes in the requirements is an integral part of project processes. It is usually
difficult to envision how the product will look, works, functions and evolves;
accordingly, customers keep changing their requirements as they improve their
understanding of the features of the product they need and ask for. We can neglect

this fact and block change introduction in the requirements after they have been
formalized, set and agreed upon. Alternatively, we can offer a process that allows
change introduction in the requirements without reducing the product quality; This
is the approach that the agile approach attempts to accomplish.

In what follows we present several agile ideas within Plotkin's framework.

Reducing the change scope – time reduction mechanism
Customer has an opportunity to update the requirements at the end of each short
releases and iteration; clearly, this is a mechanism for time reduction.

Analysis shows that cost of change introduction in this fashion remains
constant. This is because it allows updating the requirements on a small scale as
soon as it is realized that a different feature is needed than the one that has been
envisioned in an earlier stage. Under this working assumption, customers are not
forced to present a full requirement list and do not need to assume what will
probably be needed and therefore, in the planning sessions, they ask only for
relevant requirements. Thus, at the end of an agile project, only features that the
customer needs are produced.

Reducing the change scope – space reduction mechanism
Space is reduced by the co-location of the team and the customer in the
workspace. This space includes also the walls that serve as a communicative
means, so that all the relevant information is accecible to all.

Join the change – diversity mechanism
The discussion about diversity is of high relevance in this context of change in
requirements. This is because diversity welcomes new ideas and perspectives that
are so predominant in change introduction processes.

Join the change – mechanism of knowledge gaining devices
The agile approach applies several practices that can be characterized as
knowledge-gaining devices. Among them we mention the customer and,
reflections and retrospectives processes.

4.3. Illustrations from Who Moved My Cheese?

The book Who Moved My Cheese? An Amazing Way to Deal with Change in Your
Work and in Your Life (Johnson 1998) describes different approaches towards
change and towards the realization of the need for change. It teaches us how to
deal with change, that different people approach change differently, and that a
specific mindset should be adopted when one gets into a change process. The
book tells the story of two mice and two "littlepeople", who had to leave their
comfort zone and to find a new resource for their cheese after it had been stopped
supplied.

http://en.wikipedia.org/wiki/Spencer_Johnson_(writer)
http://en.wikipedia.org/wiki/Mouse

In what follows we present several illustrative quotes for each of the
three agile anywhere categories – characteristics, behavior, emotion. The message
is clear: agility, as a way to approach change as well as the change process itself,
is relevant anywhere. We note that the book was published more or less when the
agile approach started being implemented in software development processes. Not
surprisingly, the following quotes use common terms from the agile world, such as
"embrace change" and "simplicity". We recommend reading the book, and
specifically, the summary of all the lessons learned from the story (e.g., Monitor
Change and Adapt To Change Quickly, p. 74), and see their resemblances to the
agile principles.

Change Characteristics

The following quotes deliver the idea that change happens all the time and
therefore, one should expect change, be ready to change all the time, and take a
proactive approach:

• p. 18: Everyone knows that not all change is good or even necessary. But in a
world that is constantly changing, it is to our advantage to learn how to adapt
and enjoy something better.

• P.45: Haw said, "Sometimes, Hem, things change and they are never the same
again. This looks like one of those times. That's life! Live moves on. And so
should we."

• P. 63: Now he [Haw] realized it was natural for change to continually occur,
whether you expect it or not.

Simplicity – one of the basic ideas of agility – is also mentioned in the book as a
characteristic of a change process:

• p. 17: In The Story you will see that the two mice do better when they are faced
with change because they keep things simple, while the two Littlepeople's
complex brains and human emotions complicate things.

• P. 71: He knew he had learned something useful about moving on from his
mice friends, Sniff and Scurry. They kept life simple. They didn't overanalyze
or overcomplicate things. When the situation changed and the Cheeses had
been moved, they changes and moved with the Cheeses.

Behavior while Change
Taking responsibility:
 P. 50: Whenever he started to get discouraged, he reminded himself that what

he was doing, as uncomfortable as it was at the moment, was in reality much
better than staying in the Cheeseless situation. He was taking control, rather
than simply letting things happen to him.
Then he reminded himself, if Sniff and Scurry could move on, so could he!
P. 75: While Haw still had a great supply of cheese, he often went out into the
Maze and explored new areas to stay in touch with what was happening

around him. He knew it was safer to be aware of his real choices than to
isolate himself in his comfort zone.

Embrace change:
 P. 65: He [Haw] knew that when you change what you believe, you change

what you do.
You can believe that a change will harm you and resist it. Or you can believe
that finding New Cheeses will help you and embrace the change.

Reflection:
 P. 70: As Haw enjoyed the New Cheese, he reflected on what he had learned.

He realized that when he had been afraid to change he had been holding on to
the illusion of Old Cheese that was no longer there.

 P. 71: He [Haw] reflected on the mistakes he had made in the past and used
them to plan for the future. He knew that you could learn to deal with change.
You could be more aware of the need to keep things simple, be flexible, and
move quickly.

Change Emotions

Resistance to change:
 P. 41: "I'm getting to old for that," Hem said. "And I'm afraid I'm not

interested in getting lost and making a fool of myself. Are you?"
 P. 51: Mold may even have begun to grow on the Old Cheese, although he

[Haw] hadn't noticed it. He had to admit however, that if he had wanted to, he
probably could have seen what was coming. But he didn't.

Uncertainty:
• P. 40: He [Haw] believed they [the mice – Sniff and Scurry] might be having a

hard time, as running through the Maze usually involved some uncertainty. But
he also knew that it was likely to only last for a while.

Fear and Courage:
• P. 44: He [Haw] painted a picture in his mind. He saw himself venturing out

into the Maze with a smile on his face.
While this picture surprised him, it made him feel god. He saw himself getting
lost now and then in the Maze, but felt confident he would eventually find New
Cheese out there and all the good things that came with it. He gathered his
courage.

 P. 49: He [Haw] knew sometimes some fear can be good. When you are
afraid things are going to get worse if you don't do something. It can prompt
you into action. But it is not good when you are so afraid that it keeps you
from doing anything.
He looked at his right, to the part of the Maze where he had never been, and
felt the fear.
Then, he took a deep breath, turned right into the Maze, and jogged slowly,
into the unknown.

4.4 Summary

In this chapter we present two instances in which agile ideas are applied –
evolution and a story that aims to deliver the notion of coping with change. We
choose these examples, among many others we are familiar with, to illustrate the
vast variety of cases in which these ideas were found to be valuable, and thus, to
further support our choice in the title of the book Agile Anywhere.

4.5 References

Johnson S (1998) Who Moved My Cheese? An Amazing Way to Deal with Change in Your
Work and in Your Life. Putnam Adult

Plotkin H (1997) Darwin Machines and the Nature of Knowledge. Harvard University Press

http://en.wikipedia.org/wiki/G._P._Putnam%27s_Sons

5 Team

5.1 Overview

This chapter focuses on teams and leadership – both are most influential factors of
projects' success. Consequently, agility highly appreciates and supports them.

One agile practice which is highlighted in this chapter is applying a role
scheme which fosters the interconnections and dependencies between the
members of agile teams and enhances creativity, responsibility, accountability,
diversity, and measure collection. The role scheme delivers the message that each
team member can contribute to the project also on the team level, beyond his or
her individual contribution, and that the mutual contribution of the individuals in
the team creates a whole which is greater than the sum of its parts.

Another agile practice which this chapter deals with is leadership that is the
ability to influence people, leading them to behave in a certain way in order to
achieve the group’s goals. Leadership is independent of job titles and
descriptions. Usually, however, in order to lead, leaders need the power derived
from their organizational position. The agile approach suggests a leadership style
that emphasizes the team spirit and empowers the team members to be highly
committed to the project.

5.2 A Role Scheme of Agile Teams

Project teams are needed for the accomplishment of the project deliverables.
Usually, this cannot be accomplished by one person, and teamwork is needed.

According to (Humphrey 2000) a team consists of at least two people who are
working towards a common goal/objective/mission, where each person has been
assigned a specific role to perform and where a completion of the mission requires
some form of dependency among team members (p. 19). The assignment of roles
serves as a means for splitting, among all the team members, the responsibility for
the project management and progress. When the responsibility is split among all
teammates, each aspect of the project is treated by one teammate and each
teammate feels a responsibility for the said specific aspect. Both the project as a
whole and each of the individual team members are benefited from this kind of
organization.

For illustration, we present a possible role scheme in an agile software
development team (Table 5.1). The role scheme consists of four groups of roles
which expands and integrates the role schemes suggested by different agile
methods (Dubinsky and Hazzan 2004, 2006).

Table 5.1 Illustration - Roles in an Agile Software Team

Group of Roles Role Description
Leading group Coach Coordinates and solves group problems, leads and guides

development sessions.
Tracker Measures the group progress by measures defined by the

team, the customer and the organization, manages the
workspace boards, manages the team diary/collective
memory.

Methodologist Guides the team with respect to the working
methodology, inspire its spirit, answers questions, looks
for solutions to problems, etc.

Customer group Proxy-user Holds a user centric approach, e.g., performs an on-going
user evaluation of the product.

Proxy-customer Holds a customer-oriented approach, e.g., tells customer
stories, provides feedback, and defines acceptance tests.

Acceptance
tester

Defines tests with the customer and develops acceptance
tests.

Code group Designer Maintains current design, works to simplify design,
promotes refactoring activities.

Unit tester Guides a test-driven development process, e.g.,
establishes an automated test suite, guides and supports
others in the development of unit tests.

Continuous
integrator

Establishes the integration environment, publishes and
guides rules pertaining to the addition of new code.

Code reviewer Maintains source control, establishes and refines coding
standards.

Maintenance
group

Presenter Plans and organizes iteration/release presentations, e.g.,
demos and measures.

Documenter Plans and organizes the project documentation: process
documentation, user’s guide, and installation instructions.

Installer Plans and ensures the assimilation process.

As can be seen, in the case of a software project, the different roles address

different aspects of the development process; this point of view can be applied to
any agile project.

5.2.1 Human Perspective on the Role Scheme

Social aspect
• A personal role increases teammates' involvement, communication,

accountability, responsibility and commitment to the process and to their team.
• Team members wish to have a specific role in addition to their tasks in order to

increase their influence and involvement in the project management.

Cognitive aspect
• Since each team member approaches the project from one specific perspective,

each team member can focus on this one specific aspect without being
distracted by the multi-faceted nature of the process. Consequently, each team
member gradually improves his or her understanding about the said aspect.

• The role scheme supports team members' thinking in terms of different levels
of abstraction. On the one hand, each team members sees his or her task on a
relatively low level of abstraction; on the other hand, the personal role of each
team member enables each of them to gain a global overview of the project on
higher level of abstraction.

• The role scheme enhances knowledge distribution since each team member
specializes in one domain and shares his or her knowledge with the other team
members. In addition, since the role scheme leads to knowledge distribution, no
harm happens when one team member leaves the team. In this case, the other
team members have a reasonable amount of knowledge to continue with
respect to the said role.

• The role scheme supports the individual's professional development. Team
members perform their roles and improve the role performance while learning
the practice that their role represents. In turn, they became experts in the
specific aspect of the project on which their personal role focuses. In addition,
when a team member feels that he or she has exploited the role contribution to
his or her professional development and wishes to hold another role in the
team, role rotation can take place.

5.2.2 Using the Role Scheme to Scale Agile Projects

The role scheme supports also the scaling up of agile projects. Suppose we have
five agile teams as part of one project, each of them applies the role scheme. In
this setting, weekly role meetings are set for each role, in which all the role
holders from all the teams participate. For example, in a system project, a weekly
meeting of all testers of the project takes place; a bi-weekly meeting of all the
integrators takes place, etc. It is recommended that these role meetings are
scheduled at the same time in order not to collide with the working sessions of the
teams. In these meetings project-wide issues are discussed, to allow the project
management proceeds in one direction.

The use of the role scheme for scaling up purposes enhances also knowledge
distribution. On the individual level, each team members has the opportunity to
communicate with other practitioners, beyond his or her team, to present the
knowledge his or him team gained so far with respect to the said role and to serve
as a bridge between the team and the organization with respect to the aspect of the
project of which she or he is in charge. On the team level, each team may benefit

also from the wisdom and experiences gained by other teams. For example, the
team representatives may bring into the role meetings a problem with which their
team faces, and ask the other role representatives whether their experience can
contribute to the problem solution. Such a dialogue creates a knowledge
infrastructure for the entire project from which all teams can benefit. On the
organization level, and based on the individual and team levels, knowledge is
distributed, managed and maintained.

5.3 Leadership

Leadership is a social phenomenon required for achieving group’s goals
(Nirenberg 2002). The agile approach adopts a leadership style that empowers the
people involved in the project. For example, instead of promoting the idea that
‘Leaders should keep the power to themselves in order not to loose it’, the agile
approach fosters the idea that ‘Leaders gains power from its sharing’. This idea is
expressed, among other ways, by the transparency of the agile process that makes
information accessible to anyone and enables each team member to be
accountable and fully involved in the project.

Table 5.2 (adopted from Huff and Moeslein 2005; originally from Drath 1998)
presents the evolution of leadership models, indicating a shift in leadership
perception.

Table 5.2. Evolving models of leadership (Drath, 1998: 408)

 Ancient Traditional Modern Future
Idea of
Leadership

Domination Influence Common goals Reciprocal
Relations

Action of
Leadership

Commanding
followers

Motivating
followers

Creating inner
commitment

Mutual
meaning
making

Focus of the
Leadership
Development

Power of
the leader

Interpersonal
skills of
the leader

Self-knowledge
of the leader

Interactions
within
the group

In agile projects, “Leadership is generally taken to mean the ability to influence

others in a group to act in a particular way to achieve group goals” (Hughes and
Cotterell 2002, p. 222). In terms of Table 5.2, the agile approach fits the ‘modern’
and ‘future’ leadership styles, on which we elaborate in what follows.

With respect to the Idea of Leadership, the notion of Common Goals in agile
teams is mainly expressed by customer on going collaboration along the entire
process and by the information transparency, which enables each team member
know what these common goals are and participate in the planning and
presentation meetings related to these goals. Reciprocal Relations relate to high

levels of cooperation, confidence and trust among team members. In (Hazzan and
Dubinsky, 2005) we use game theory to explain reciprocation in development
environments by employing the prisoners’ dilemma.

With respect to the Action of Leadership (Table 5.2), inner commitment is
created and enhanced when using the role scheme by which each team member
has an additional specific role that assists the project leadership (Dubinsky and
Hazzan 2006). Though team members are committed, mutual meaning is still
needed to provide a relevant and meaningful product.

The Focus of Leadership Development aspect in Table 5.2 shows how the
leader position should be developed to improve leadership. While the three first
columns focus on the leader, the ‘future’ column deals with the group and its
interactions. As the level of leadership increases, the group interactions lead the
team, i.e., the way team members communicate, reflect, and collaborate enables
the team to lead itself as if there is no leader, while, in practice, high quality
leadership exists.

5.4 Summary

This chapter introduces the concept of role assignment to team members,
which, on the personal level improves their understanding of the project and its
deliveries, and on the team level, improves the process and quality. In addition,
we discuss leadership in agile environments and posed in within a framework of
evolution of leadership models.

5.5 References

Drath WH (1998) Approaching the Future of Leadership Development. In: C. D. McCauley, R.
S. Moxley, and E. Van Velsor (eds.), The Center for Creative Leadership: Handbook of
Leadership Development 403–432 San Francisco, CA, Jossey-Bass.

Dubinsky Y, Hazzan O (2004) Roles in agile software development teams. 5th International
Conference on Extreme Programming and Agile Processes in Software Engineering,
Garmisch-Partenkirchen, Germany 157-165

Dubinsky Y, Hazzan O (2006) Using a role scheme to derive software project quality. Journal of
System Architecture 52(11) 693-699

Hazzan O, Dubinsky Y (2005) Cognitive and social perspectives of software development
methods: The case of Extreme Programming. Proceedings of the 6th International Conf. on
Extreme Programming and Agile Processes in Software Engineering 74-81

Huff AS, Moeslein K (2005) An Agenda for Understanding Individual Leadership in Corporate
Leadership Systems. In Cooper, CL. (Eds.) Leadership and Management in the 21st Century:
Business Challenges of the Future 248-270 Oxford University Press Inc., New York.

Hughes B, Cotterell M (2002) Software Project Management. 3rd edition, McGraw-Hill.
Humphrey W (2000) Introduction to the Team Software Process. MA: Addison-Wesley.
Nirenberg J (2002) Global Leadership. Capstone Wiley.

http://edu.technion.ac.il/Courses/cs_methods/eXtremeProgramming/XP_Papers/XP2005_Hazzan&Dubinsky_Cognitive&Social_Theories.pdf
http://edu.technion.ac.il/Courses/cs_methods/eXtremeProgramming/XP_Papers/XP2005_Hazzan&Dubinsky_Cognitive&Social_Theories.pdf

6 Customers and Users

6.1 Overview

The Agile Manifesto emphasizes ‘individuals and interactions’. When
practitioners are asked who are these individuals, most of them would probably
mention different roles like system analysts, developers, and testers. The agile
approach increases the awareness to additional essential roles in the project, like
the customer, who is one of the most important project stakeholders. The users, at
the same time, are somehow wrongly neglected. A common misconception is that
the customer represents all users. In this chapter these two roles are distinguished
and described by addressing their main responsibilities.

The customer. The customer's position and role is one of the main changes
that the agile approach introduced into processes in general and into team
members' conception of the customer role in particular. This customer position in
agile environments is central. It is based on on-going communication between the
customer and the team members, both with respect to the project requirements, as
well as with respect to the way testing is performed, and how the suitability of the
deliverables to the customer's needs is achieved. This communication is
established with the aid of several practices. In this chapter we focus on the
practice of planning and how it fosters customer-teammates communication and
bridge the gap (if exists) between the customer's and the teammates' worldviews.
As it turns out, the customer role is not only supported by several practices, but
rather it also fosters agile characteristics, such as information sharing and
transparency. The main idea delivered is that the agile approach supports the
customer role and enables the required collaboration needed for the production of
high quality products.

The user. While the customer is one or few people who either actually pays or
has other kinds of interest in the process, in the context of most projects, the users
is, in fact, the main clients. This is where the agile paradigm meets the world of
Human Computer Interaction (HCI). HCI adds the user perspective by offering
user evaluation methods that provide indicators for the usability and functionality
of the project deliverables (Dix et al, 2004; Norman, 2006). The main idea
delivered is the mutual connections and contributions between agile concepts and
HCI practices. Specifically, on the one hand, the user evaluation is fostered by the
agile process; on the other hand, the product benefits from keeping its internals
updated according to the on-going user evaluation.

6.2 The Customer

The conception of the customer role in agile environments is significantly
extended. This new meaning is not limited to listening to the customer; rather, it
also implies that the customer decisions are followed. This conception can be
implemented since the customer presents on-site and is involved in the process
continuously, as is presented in what follows.

A project schedule comprises of short releases of three to four months. Each
release includes short iterations of one to few weeks. As part of a release planning,
the following activities take place

• The customer describes the project vision, the project main stories, and the
guidelines according to which priorities will be set.

• The team-members present their vision about the project deliverables.
• The project manager presents his or her view of the process as well as his or

her personal expectations.
• Other stake holders present their expectations from the project.

This part of a release planning takes place after the presentation of the previous
release has completed and a retrospective session between the two releases has
been facilitated.

A Business Day (Dubinsky et al, 2005A) takes place between each two
consequent iterations of the release. The rest of the iteration days are working
days. At the end of each iteration a retrospective and iteration planning take place.
In the Business Day, in addition to the team and the customer, other project stake
holders are invited to participate, including managers and external parties, such as
customer associates and users.

In the first part of the Business Day the previous iteration is summarized. In the
second part, after a reflective session takes place, the next iteration planning starts.
The Business Day between iterations is time-boxed up to one working day and the
exact schedule of the different activities may vary between projects. During the
Business Day, the customer has a significant role, as is explained in what follows.

The presentation of the accomplishments of the ending iteration
demonstrates the main new features. In the case of a software project, the
presented features belong to specific customer stories of the ending iteration, when
a customer story is defined in (Beck and Fowler, 2000) as follows: “The story is
the unit of functionality in [a] … project. We demonstrate progress by delivering
tested, integrated code that implements a story. A story should be understandable
to customers and developers, testable, valuable to the customer, and small enough
so that programmers can build half a dozen in an iteration (p. 45)”. The customer
business interest is also emphasized: “The most important stories to do first are the
ones that contain the highest business value. Beware of sequencing stories based
on technical dependencies. Most of the time, the dependencies are less important
than the value (p. 63)”.

During the presentation, each team member presents his or her work. This
activity raises team members' accountability for at least two reasons. First, they
should present high quality deliverable that answers a specific customer story.
Second, they should present this output every iteration in front of all people who
are interested in the project, including managers and external parties, as well as
their own team. Furthermore, since each team member shares the information with
all the other people involved and answers their questions, the overall
understanding of the project components and features increases.

The measures review includes a presentation and analysis of the ending
iteration's metrics. In the case of software development projects, the following
four metrics are interesting for many agile teams (Dubinsky et al, 2005B): The
product metric (amount of written and passed tests), the pulse metric (a measure of
continuous integration; Beck, 2000), the burn-down metric (an estimation of the
convergence of the release/iteration goals), and fault metrics (number of new and
open defects).

The goal of this element of the iteration summary is twofold. First is to present
the data to the entire team, to base the individuals' perception (for example, about
product quality, time lost to overhead, etc.) by facts. Second is to openly discuss
the reasons behind the metrics, and how, if needed, the process can be improved.

The customer role in this part is ‘to be there’, to increase process and progress
transparency, and to be updated continuously about the project status. The
decisions taken by the customer are also influenced by the information provided in
the measures presentation. For example, if the measures indicate that a specific
component is more complex than it seemed when planned, the customer can
decide to change the development scope and / or the priorities. The customer can
also add measures of his or her own interest. This way the teammates improve
their understanding with respect to the customer emphases and priorities.

The customer feedback is a short, informal verbal summary of the iteration,
given by the customer. This direct feedback usually focuses on the product rather
than on the process. It is important to include the customer's message in the
iteration summary to signal the customer's importance in the process. It also helps
in focusing people's attention on the product as an end goal, rather than their own
specific tasks.

The reflective session's goal is to discuss a specific issue in the process, and to
change the process if needed. This part of the Business Day, whose topic is
announced before it takes place, is considered as a timeout to stop considering the
regular, mainly technical, issues and to think about other kind of topics. Usually,
people enjoy this timeout, cooperate in bringing new issues to the discussion and
volunteer to take the responsibility to follow up things that they find interesting
and relevant for them.

The planning the next iteration starts immediately after the previous iteration
is summarized and its reflective sessions ended. As in the first part of the Business
Day, the customer and all team members participate; other people who have
interest in the project are invited.

First, the customer tells the stories that were prepared in advance to be
developed in the next iteration. To the customer list, stories from other sources are
added, such as: incomplete stories from previous iterations, refactoring tasks, and
user interface stories that emerged from the user evaluation. The customer role in
this part is to prioritize the stories so that all the people involved, including all
team members, hear and realize the customer's perspective with respect to the
story importance: which are the more and less important ones.

Second, based on earlier work, the top prioritized tasks are described and
estimated by the team members who take ownership on them. The actual planning
is set according to the available time of the team members in the coming iteration.

Finally, the workloads between the team members are balanced.
The iteration planning is shaped differently according to project goals;

nevertheless, it is important to follow the following guidelines:

• Time is an important resource and should be managed wisely.
• The smaller a task is, the more accurate its time estimation is; Thus, product

delivery on time and of high quality is better ensured.
• An ordered professional work environment is appreciated and desired by

professional practitioners; chaos frustrates professional practitioners especially
because products are of low quality and their professionalism is doubted.

• Fairness and a cooperative work environment are valued by professional
practitioners; an open and transparent work distribution, in which all parties are
involved, increases practitioners' security, trust and cooperation.

6.3 The User

The Human Computer Interaction (HCI) field has emerged at the early 1960s. It
deals with the interface design and evaluation and with the interactions between
users and systems. The main goal of the HCI field is to improve these interfaces
and interactions according to users' needs. This is done by rigorous techniques that
involve users and HCI design experts in the design of the user interface and
evaluation process. Norman (2006) suggests abandoning the traditional HCI
approach of ‘study first, design second’ and to try the ‘design, then study’
approach. This suggestion is influenced by the agile approach.

Since usability is “The extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use.” (ISO 9241-11, 1998), it is essential to integrate the users
in the project process. This importance is highlighted when the most useful
indicators in measuring the usability level of a product, as is defined by the ISO
9241 standards, are examined:

• Effectiveness in use, which encompasses accuracy and completeness through
which users achieve certain results.

• Efficiency in use, which has to do with the resources utilized in relation to
accuracy and completeness.

• Satisfaction in use, which includes freedom from inconveniences and positive
attitude toward the use of a product.

The integration of the user in the project environment is accomplished by the
user centered design (UCD) approach, which is a set of design techniques that
emphasizes the user needs during the design of the user interface. The outcome of
the user interface design phase should support usability of the interfaces and
interactions. This is achieved by user evaluation by evaluation techniques (Rogers
et al, 2002; Vredenburg et al, 2002).

Evaluation of user interfaces aims at assessing the extent of system
functionality while the user interacts with and gains experience with the system,
and identifies specific problems related to the system (Dix et al, 2004). There are
two main types of evaluation: expert-based evaluation and user-based evaluation.

In expert-based evaluation, a designer or a HCI expert assesses the design of
user interfaces based on known cognitive principles or empirical results. The user-
based evaluation is based on user participation, i.e. evaluation that involves the
people who are going to use the system. User-based evaluation techniques include:
observations, questionnaires, interviews, and physiological monitoring methods.
User-based evaluation can be conducted in a laboratory and/or in the field.

Surprisingly, it is known that the best evaluation results come from small
groups with no more than five users, conducted in several iterations (Nielsen and
Landauer, 1993). Therefore, an evaluation process is not an expensive process as
can be wrongly conceived. For example, (Nielsen and Landauer, 1993) describe
iterative design in which the evaluation of five users reveals 85% of the usability
problems. Accordingly, the design of the user interface has been changed and has
been re-evaluated to check if problems have been fixed and if new problems have
not emerged. Indeed, re-evaluation iterations probe deeper usability problems.

When combining UCD with Agile approach we observe that they mutually
benefit each other (Blomkvist, 2005; Humayoun et al, 2009; Humayoun et al
2011); hence, users should be constantly involved in the process. Accordingly, in
agile projects, users are constantly involved in the process and their role is
highlighted by the agile approach. The user evaluation contributes to the set of
measures used for the steering and directing of the projects as well as enhances the
design of user interfaces which are part of the project.

6.4 Summary

In this chapter the customers and users roles in agile projects are described. The
activities, by which the customer navigates the project process by telling the
stories, prioritizing stories, and giving on going feedback to the teammates with
respect to the evolved artifacts, are laid out. This kind of collaboration sets the

atmosphere needed for dealing with change requests, thus establishing a process
that leads to high quality product (also) from the customer perspective.

User involvement in agile projects is also discussed to deliver the needed user
interface. For this purpose, a user centered approach is adopted and goes hand in
hand with the agile approach.

6.5 References

Beck K (2000) Extreme Programming Explained: Embrace Change. Addison-Wesley.
Beck K, Fowler M (2000) Planning Extreme Programming. Addison-Wesley.
Blomkvist S (2005) Towards a Model for Bridging Agile Development and User-Centered

Design. Published as a book chapter: Seffah A, Gulliksen J, Desmarais M (eds.) Human-
Centered Software Engineering – Integrating Usability in The Development Process.
Springer, Dordrecht, The Netherlands.

Dix A, Finlay J, Abowd GD, Beale R (2004) Human-Computer-Interaction. 3rd Edition,
Scotprint, Haddington.

Dubinsky Y, Hazzan O, Keren A (2005A) Introducing Extreme Programming into a Software
Project at the Israeli Air Force. Proceedings of the 6th International Conf. on Extreme
Programming and Agile Processes in Software Engineering, Sheffield University, UK.

Dubinsky Y, Talby D, Hazzan O, Keren A (2005B) Agile Metrics at the Israeli Air Force. Agile
Conference, Denver, Colorado.

Humayoun S, Dubinsky Y, Catarci T (2009) UEMan: A Tool to Manage User Evaluation in
Development Environments, 31th Intern. Conf. Software Engineering, ICSE, Vancouver,
Canada.

Humayoun S.R., Dubinsky Y., Catarci T, A Three-Fold Integration Framework to Incorporate
User-Centered Design into Agile Software Development, Human Centered Design, HCII
2011, p. 55-64, 2011.

ISO 9241-11 (1998) Ergonomic requirements for office work with visual display terminals:
Guidance on usability.

Nielsen J, Landauer TK (1993) A mathematical model of the finding of usability problems.
Proceedings of ACM INTERCHI'93 Conference, Amsterdam, The Netherlands 206-213

Norman D (2006) Why doing user observations first is wrong. ACM Interactions, July-August.
Rogers Y, Preece J, Sharp H (2002) Interaction Design: Beyond Human-Computer Interaction.

Wiley, New York.
Vredenburg K, Isensee S, Righi C (2002) User-Centered Design: An Integrated Approach.

Software Quality Institute Series, Prentice Hall PTR.

http://edu.technion.ac.il/Courses/cs_methods/eXtremeProgramming/XP_Papers/Dubinsky&Hazzan&Keren-IntroducingXPintoTheIsraeliAirForce.pdf
http://edu.technion.ac.il/Courses/cs_methods/eXtremeProgramming/XP_Papers/Dubinsky&Hazzan&Keren-IntroducingXPintoTheIsraeliAirForce.pdf

7 Time

7.1 Overview

Time is addressed differently by different people and cultures; for example, in
western culture, time is sometimes associated with financial profit, i.e., "Time is
money". Time plays a special role in agile projects: the project schedule should be
met, the product should be delivered on time, and teammates estimate the time
they need to complete their tasks. Furthermore, time is boxed for each activity,
and when needed, instead of ‘moving’ deadlines, the scope is changed accordingly
to the customer priorities. This conception is supported by agility in different ways
that not only enable to work in a sustainable pace, but also result in high quality
products.

This chapter examines how time issues are expressed in agile environments. It
addresses three ways by which time is managed effectively by agile methods –
sustainable pace, time measurements, and prioritizing tasks, and time-related
problems associated with agile software projects.

7.2 Sustainable Pace

Sustainable pace means that an agile process is carried out in a reasonable number
of hours, which are well planned and enable to be productive and produce quality
products (Reifer 2002).

This idea is manifested also in Finish educational system which is considered
as one of the best education systems in the world. Specifically, even though
children in Finland spend fewer hours at school than do children in many other
Western countries, they achieve better results. These results are apparently
attained by utilizing the school hours in a way that encourages significant learning
processes. Indeed, it is apparent that in Finland, students are active, improve their
skills, and teach each other in classes of 15 students and two teachers.

This phenomenon is also expressed in agile software development. Efficient
time management in agile environments supports the production of higher quality
product in a limited, relatively smaller number of hours per day, as opposed to the
practice of working long hours under other management methods.

7.3 Time Measurements

One of the common measures of agile projects is the estimated time for tasks-to-
be-performed versus the actual time to accomplish them. In order to control the
project progress, this kind of measure can be inspected on a daily basis, weekly
basis or monthly basis, according to the agile project.

For example, in the case of agile software projects, the white boards of the
collaborative workspace constantly present a graph that its horizontal axis
represents the iteration days and its vertical axes indicates number of hours. Each
day, the tracker adds two new points to a graph that represent the project progress.
The first one – the “total expected” point – represents the cumulative estimations
of all completed tasks until the previous day; the second point – the “total done”
point – represents the cumulative actual time devoted to those tasks. A completed
task is counted only when the developer in charge completes its coding, unit
testing, and integration into the developed system.

7.4 Prioritizing Tasks

Covey's concept of First Things First (Covey et al 1994) introduces an organizing
framework that explains how agile processes guide agile teams to focus on what is
important rather than on what is urgent.

Covey suggests dividing the activities on which a person works to four
quadrants (see Table 7.1). The idea is to direct practitioners to focus on Quadrant
II, which contains items that are non-urgent but important. As it turns out, these
items are the ones we are more likely to neglect but should focus on in order to
achieve effectiveness and quality. In the context of software development, this
phenomenon can be explained by the fact that people tend to be distracted from
what is important because it is sometimes difficult to focus on the development of
an intangible product, such as software.

Table 7.1. Time Management – Importance vs. Urgency

I. Urgent & Important

II. Not Urgent & Important

III. Urgent & Not Important

IV. Not Urgent & Not Important

http://en.wikipedia.org/wiki/Cartesian_coordinate_system#Two-dimensional_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system#Two-dimensional_coordinate_system

Agile software development guides practitioners to implement activities from
the second quadrant – the Quality quadrant (important and not urgent), inspiring a
work process that is composed of important (and not urgent) activities and
eliminating the performance of urgent activities (whether important or not) during
the course of the project. Table 7.2 presents a sample of activities suggested by
team members for each quadrant. As can be seen, Quadrant II – the Quality
quadrant – contains agile activities and practices. The project manager noted that:
"The second quadrant is characterized by teamwork – because of the team, I do
what is important and I do not give up."

Table 7.2. A sample of Practitioners' Suggestions for Each Quadrant

I. Urgent & Important

Production problems
Fixing bugs that prevent progress
Preparing a presentation after it has been
postponed till the last minute

II. Not Urgent & Important

Iteration planning
Design
Learning new technologies
Refactoring
Tracking – follow-up and control
Testing
Taking care of infrastructure
Preparing a presentation on time

III. Urgent & Not Important

Working on management assignments that arrive
late and have tight deadlines
Helping other team members with urgent tasks
that are not important for me

IV. Not Urgent & Not Important

Mingling
Personal arrangements/errands

7.5 Time-Related Problems of Software Projects

We illustrate the importance of time in agile software projects, by quoting Brooks'
classic book The Mythical Man-Month (Brooks 1975, 1995):

"More software projects have gone awry for lack of calendar time than for
all other causes combined. Why is this cause a disaster so common?
First, our techniques of estimating are poorly developed. More seriously,
they reflect an unvoiced assumption which is quite untrue, i.e., that all will
go well.
Second, our estimating techniques fallaciously confuse effort with
progress, hiding the assumption that man and months are interchangeable.
[…]

http://en.wikipedia.org/wiki/Cartesian_coordinate_system#Two-dimensional_coordinate_system

Fifth, when schedule slippage is recognized, the natural (and traditional)
response is to add manpower. Like dousing a fire with gasoline, this
makes matter worse, much worse. More fire requires more gasoline, and
thus begins a regenerative cycle which ends in disaster." (p. 14)

Though time occupies a crucial role in project management, in software

engineering, time plays a special role and it is one of the most important factors
dominating software development processes. One reason that makes time so
crucial in software development is that software development does not progress
linearly. This fact is expressed by Brooks' statement that, in software projects,
months and people are not interchangeable (Brooks 1975, 1995). Hazzan and
Dubinsky (2007) outline time-related problems of software projects, such as:
Bottlenecks, project planning and schedule, time estimation, time pressure, and
late delivery, to illustrate the significant role of time management in software
development processes.

7.6 Summary

This chapter discusses the concepts of time and time management in agile
environments. It reflects the tight approach of the agile approach to time, which
ensures a controlled process that enables to increase product quality.

7.7 References

Brooks FP (1975, 1995) The Mythical Man-Month – Essays on Software Engineering, Addison-
Wesley.

Covey S, Merrill AR, Merrill RR (1994) First Things First. Free Press.
Hazzan O, Dubinsky Y (2007) The software engineering timeline: A time management

perspective. Proceedings of the IEEE International Conference on Software – Science,
Technology & Engineering, Herzelia, Israel 95-103

Reifer DJ (2002) How to get the most out of XP/Agile methods, Proceedings of the Second XP
universe and First Agile Universe Conference, Chicago, IL 185-196

8 Measures

8.1 Overview

There is a consensus that the performance, control and management of every
process and activity can be improved by using measures to monitor them. The
agile approach promotes a constant tracking during the entire project. Further, the
essence of the tracker role includes the responsibility to define and refine the
measures, data collection and measure presentation. Some measures are presented
daily, like the daily progress within the iteration; some measures are presented
each iteration, like the iteration progress within the release; yet, other measures are
presented every release, like customer level of satisfaction or product testability.
By using measures on a regular basis, all teammates and stakeholders can view
them, give feedback and suggest measure refinements, Thus, their understanding
of the project essence is improved, their accountability for the project deliverables
is fostered, project transparency is increased and cognitive complexity is reduced.
We answer the following questions as they are expressed in agile projects:
• Why are measures needed?
• Who decides what is measured?
• What should be measured?
• When are measures taken?
• How are measures taken?
• Who does take measure?
• How are measures used?

8.2 Why Are Measures Needed?

Measures are used in order to control and monitor project processes and the
evolvement of its deliverables. A set of measures, defined for a specific project,
should adhere to the following characteristics:

• The measures should be mapped to the project goals. It is recommended that
this mapping is regularly assessed in order first, to ensure that no redundant
measures are taken and, second, to check the compliance of the different goals
based on the existing measures (Dubinsky et al, 2008).

• The measure collection should not affect the process progress that the measures
control.

In the case of a specific project, for example, a goal might be to shorten
delivery time; consequently, among different sub goals related to this goal, the
project progress can be monitored on a daily basis. This measure is then can be
viewed on a daily basis, an iteration basis, and a release basis.

Measurements enable an agile team to get constant feedback from the different
components of the project, people and deliverables. A measure which is people-
oriented can be customer satisfaction or the amount of team overtime hours (for
the sustainable pace measure). A measure which is deliverable-oriented can be
functional coverage, which shows the degree to which the deliverables fulfill the
project functional requirements. The ongoing presentation of the measures
increases project transparency. Further, as agile projects are open to change, it is
possible, if needed, to replace a set of measures during the course of the process or
to decide on different measure sets for different projects within the same
organization. One general rule, however, should be followed: Measures should
support and assist the individuals involved in the process.

8.3 Who Decides What is Measured?

In an agile process, measures are determined by the customer, the team, and the
organization management; each party decides what to measure based on its
interests in the process and deliverables.

The customer is interested in measuring the progress and the quality of the
deliverables, e.g., performances and stability; the team is interested in measuring
the impacts of the methodology, the satisfaction of the people involved, and the
quality of the artifacts from functional perspectives, such as maintainability and
scalability; managerial people are interested in the business aspect, e.g., the
project costs and return on investment, as well as customer satisfaction.

8.4 What Should be Measured?

We measure artifacts that answer specific questions derived from specific goals.
For example, suppose the team goal is to increase their productivity. Questions
that can be derived from this goal are: how many hours per day teammates work
to produce deliverables? How many hours per day teammates work in the
collaborative workspace? What is the actual size of a work package? A measure
set that helps answer such questions should fit the situation and the individuals.
The set of measures should be refined and adapted when needed.

Measures should be as simple as possible to enable their actual measurement,
as well as interpretation, by the different stake holders participating in the process.
For example, if teammates are requested to report every 15 minutes their time
estimation for the remaining work, it will become annoying; instead it can be
decided to request it once a day.

Only several measures should be chosen; a large set of measures can influence
negatively the process itself since many hours will be needed for the measurement
process. Hence, a reasonable and refined set of measures should be used. This
number of measures, however, should fit the team, the customer and the

organization's needs. Our rule of thumb should be kept though: the tracker should
invest no more than 20% of his or her time for the collection, presentation, and
refinement of the set of measures.

8.5 When are Measures Taken?

The agile approach requires constant feedback. Therefore, there are activities, like
continuous integration in software development projects, that should be measured
several times each day. In such cases it is preferable that the measures will be
taken automatically. Other activities can be measured on a daily basis. For
example, measures that reflect the number of hours invested each day in task
performance and the hour distribution among the tasks completed during the day,
can be taken on a daily basis. Measurements taken on a daily or iteration basis
allow ongoing reflection on the process progress as often as possible.

8.6 How are Measures Taken?

Though there is a set of agreed upon measures, to foster and support measure
collection, they are taken by the different roles assigned in the agile team. One
measure that the tracker tracks compares the tasks' time estimation with their
actual time; the quality assurance team is responsible, among other activities, for
measures that deal with quality; the user evaluator is responsible for measures that
reflect users’ satisfaction with the user interface design; and so on. The tracker is
responsible, though, for the measure collection and their presentations.

8.7 Who does Take Measure?

All team members are involved in measuring the progress, either by reporting
essential information to the team members who are responsible for specific
measures or by measure gathering, analysis and presentation.

8.8 How are Measures Used?

It is not sufficient to observe the measures on a regular basis in order to
communicate the project status among the different individuals and stakeholders
involved in the project. In addition to measure examination on a regular basis,
after each period, preferable after each release that longs about 2-3 months, the
mere information that the measures provide, together with their analysis, should
be evaluated against the set of the projects goals. During such an iterative process,

the goals and their sub-goals are refined, the set of measures are determined and
changed if needed, and the information is assessed to check its compliance with
the current goals.

In the agile spirit, the conclusions derived from such an examination is
communicated to all team members, the customer and the management, whether
by actual participation in such examination sessions or by other means found
appropriate for a specific project setting.

8.9 Illustration for the Case of a Software Project

This section illustrates how measures are used for monitoring a large-scale project,
that the implementation of the agile approach for its development process was
considered a risk (Talby et al 2006). Specifically, we present two measures that
were defined and deployed in this project.

Product size is the first measure. It aims at presenting the amount of completed
work. The data selected to reflect the amount of the completed work is the number
of test points. One test point is defined either as one test step in an automatic
acceptance test scenario or as one line of unit tests. The total number of test points
that passed successfully is calculated for each kind of test (either acceptance test
or unit test) and is gathered per iteration per component. Additional information
was gathered with respect to the number of test points for tests that passed, the
number of test points for tests that failed, and the number of test points for tests
that do not run at all. This product size measure was very effective in delivering
the following message: test points are the only measure that reflects the project
productivity – nothing else counts.

The product size measure was designed to cope with the risk related to the
inability to measure the project progress before the agile approach had been
applied, and, consequently, the inability to compare its current velocity (Beck and
Fowler 2000; Cohn 2006) to that of the organization’s previous development
process. The advantage of test points, over, for example, the number of lines of
code or lines of specifications, is that the number of test points for a given feature
is usually proportional to the feature’s size and complexity. This argument cannot
be stated with respect to the number of lines of code or lines of specifications.

Figure 8.1 shows a global view of the product size for one release (four
iterations), reflecting the growing numbers of test points as the product
development proceeded. The significant growth in the last iteration is explained by
the relatively small number of testers’ hours for automatic test writing that were
allocated to the project at first, and soon turned to be a bottleneck. In the third
iteration, for example, not all coded features were tested, and accordingly the Size
measure showed only a small increase. Consequently, it was decided that at the
beginning of the fourth iteration the main tester will teach the developers to write
automatic test scenarios for their code. Accordingly, during the fourth iteration,
she taught developers to write automatic tests, so she wrote fewer tests by herself.

The result was a sharp increase in the product size measure during the fourth
iteration.
Fig. 8.1. Size measure during the release

Pulse is the second measure we present, which aims to measure the integration

continuity. The data is automatically gathered from the development environment
by counting on a daily basis the number of check-in operations. Data is gathered
for code (together with its unit test) check-ins, automatic-acceptance test check-
ins, and detailed specifications check-ins.

The Pulse measure was designed to monitor the risk of high overhead due to
lack of continuous integration. Agile software development requires a different
mindset than the one that the practitioners in this project were used to: instead of
completing a two-week specifications task and only then to start the development
phase, when the agile approach started being implemented, an entire iteration was
set to be two weeks long, during which a full cycle of specification-coding-testing
is completed, and usually more than one cycle per each teammate. When keeping
a daily pulse constant, i.e., ongoing check-in integration of tested code, integration
overhead and bug fixing are reduced.

Hence, the preliminary role of the Pulse measure was to verify that integration
is spread evenly across iterations. Accordingly, steady pulse is the desired status
and it means that pulse is more or less equal across the iteration days; spiky pulse
means that most of the check-ins are grouped at the end of iterations, which means
that the developers do not integrate enough during the iterations; naturally, spiky
pulse reflects a negative signal.

Figure 8.2 shows the Pulse measure for the entire release. As can be observed,
the first week of each two-week iteration has fewer check-in operations than the
second week of the iteration. Also, in the fourth iteration, the integration was
distributed in the best way among the iteration days.

0
200
400
600
800

1000
1200
1400
1600
1800

End of 1st
Iteration

End of 2nd
Iteration

End of 3rd
Iteration

End of 4th
Iteration

N
um

be
r o

f T
es

t P
oi

nt
s

Successful Test Points Failed Test Points
Test Steps that did not run

Fig. 8.2. Pulse measure during the release

8.10 Summary

This chapter deals with measures that suit agile projects. Relevant goals and sub
goals are set, and measures are set accordingly. This approach ensures that
measures are meaningful and provides a realistic way to add and/or remove
measures according to their relevance.

8.11 References

Beck K, Fowler M (2000) Planning Extreme Programming. Addison-Wesley.
Cohn M (2006) Agile Estimating and Planning. Robert C. Martin Series, Prentice Hall PTR.
Dubinsky, Y., Yaeli, A., Feldman, Y., Zarpas, E., and Nechushtai, G. (2008) Governance of

Software Development: The Transition to Agile Scenario, IT Governance and Service
Management Frameworks and Adaptations, Section 3, Chapter XV, Idea Group Publishing,
Information Science Publishing, IRM Press.

Talby D, Hazzan O, Dubinsky Y, Keren A (2006) Agile software testing in a large-scale project.
IEEE Software, Special Issue on Software Testing 30-37.

0

50

100

150

200

02
/0

1/
20

05

09
/0

1/
20

05

16
/0

1/
20

05

23
/0

1/
20

05

30
/0

1/
20

05

06
/0

2/
20

05

13
/0

2/
20

05

20
/0

2/
20

05

Days of Release

Nu
m

be
r o

f C
he

ck
-in

Op

er
at

io
ns

9 Quality

9.1 Overview

High quality assurance is a fundamental element of every project and is
considered to be one of the difficult things to achieve and sustain. In this chapter,
we describe how quality is perceived by the agile approach, addressing process
and product quality.

With respect to the process quality we show how the transparency and tightness
characteristics of the agile approach increase the process quality. For example, the
iterative process performed in short iteration of 2 to 4 weeks, increases the process
tightness which, in turn, upsurges the process quality by enabling better control
and faster response to unexpected problems and changes.

With respect to the product quality, we elaborate on one of the agile practices
that strongly related to software quality - Test Driven Development (TDD) (Beck
2003; Feathers 2004; Newkirk et al 2004; Mishali et al, 2008), which requires a
collaborative development environment and additional supporting practices in
order to be integrated successfully.

9.2 The Agile Approach to Quality

Agile projects eliminate the notion of a production chain in order to cope with
problems associated with this notion. Instead, a more network-oriented structure,
in which the quality assurance stage is intertwined alone the entire process, is
advocated by the agile approach. Thus, all team members are equally responsible
for the software quality during the entire project duration and there is no passing
on of responsibility to other entities in the organization.

Specifically, in the context of agile software projects, the term Quality
Assurance does not appear as a specific stage of the development process. Table
9.1 compares the agile approach towards quality with some other approaches.

Table 9.1. Some differences between agile and other methods with respect to quality

Quality-related aspect The agile approach Other approaches
Who is responsible for
software quality?

All the development team members The QA team

When are quality-related
topics addressed?

All the time; quality is one of the
primary concerns of the process

At the QA stage

Quality-related activities
status

Same as other activities Low (Cohen et al. 2004)

Work style Collaboration with all parties Developers and QA people

may have conflicting
interests

9.2.1 Process Quality

Two main characteristics of agile processes are transparency and tightness. These
characteristics imply high quality process, as is illustrated in what follows.

• The one day allocated each two weeks for the presentation of the work
accomplished in the previous iteration, reflective thinking and planning of the
next iteration, lays out a tight rhythm. This tightness guides a high quality
process since it controls the project management, among other ways, by
enabling to reveal and to deal with unexpected events at early stages.

• Planning sessions are performed when all stakeholders involved in the project
present and all teammates hear the customer requirements. Consequently,
project goals, subject and features are known to everyone involved, and the
project on-going details are highly transparent. The impact of this transparency
on quality is multi faceted. For example, it decreases misunderstandings and
influences positively teammates' morale.

• Process measures, e.g., customer satisfaction and the project progress versus
estimations, are available all the time to all people involved in the project,
including the customer. The measurement process itself, as well as its on-going
availability to all project stakeholders, increases teammates' awareness, care
and attention to process quality issues.

9.2.2 Product Quality

There is no one standard way to measure product quality. In what follows we list
several agile practices which aim at constantly improving product quality.

• Refactoring provides a simple and clear design which is easy to maintain and
simplifies future extensions. When major needs for refactoring activities are
recognized, refactoring tasks are formulated and are entered for consideration
in the next planning session, to be presented to the customer and prioritized.

• Acceptance tests are defined by the teammates together with the customer in
order to validate each customer's need. During the definition process of the
acceptance tests, customer stories are elaborated and, consequently, their
understanding is improved. The actual development of the acceptance tests
increases teammates' confidence with respect to the correctness of the
developed product and enables them to articulate the product functionality at
the end of the iteration.

9.3 Test Driven Development

Test Driven Development (TDD) is an agile technique applied in agile projects,
that enables a step-by-step development of a specific functionality together with
its unit tests, when each test step precedes its respective code step.

TDD aims to provide clean, fault-free code (Beck 2003). In addition,
refactoring activities further improve the code (Fowler 1999). Accordingly, the
TDD guideline is red / green / refactor, where red means writing a simple test that
fails; green means writing the minimal and simplest code that causes the test to
pass; refactor means that code quality is improved without adding functionality.
This guideline is iteratively implemented in small steps. The accumulative
experience of the agile community is that TDD provides high-quality code
(George and Williams, 2003), which means that the code is readable and includes
fewer bugs. Furthermore, through a TDD process, software developers improve
their understanding with respect to the developed product (George and Williams
2004).

TDD can help overcome some of the common problems associated with
traditional testing in software projects. Based on (Dubinsky and Hazzan 2007), the
following TDD analysis, addresses technical, cognitive, social, affective and
managerial facets and is structured around arguments frequently offered to explain
why, in many cases, traditional testing is skipped. Such arguments are
accompanied by explanations on how TDD might help overcome these obstacles.

• Not enough time to test: Traditionally, unit testing, if exists, is performed after
the code is written and usually under time pressure. According to Van Vliet
(2000), "the testing activity often does not get the attention it deserves. By the
time the software has been written, we are often pressed for time, which does
not encourage thorough testing" (p. 397). However, "postponing test activities
for too long is one of the most severe mistakes often made in software
development projects. This postponement makes testing a rather costly affair"
(ibid.). TDD eliminates this problem since unit tests are performed throughout
the entire development process.

• Testing provides negative feedback: Traditional testing processes require
developers to find bugs in their own work, and thus, testing activities end in
failure. In TDD, the rules of the game are reversed. TDD ends in success: after
a test fails, code is written and the test passes – success!

• Responsibility for testing is transferred: In some software development
environments, bugs are found and fixed by other practitioners than the
developer who wrote the code; thus, it is not clear who is responsible for each
specific coding and testing activity. In TDD processes, the person who writes
the code is also responsible for its testing.

• Testing is a low-status job: When testing is carried out at the end of the
production line, inspired by traditional working class jobs, the task is attributed
low status, which in turn leads to tension among different groups of employees

(Cohen et al 2004). Since in TDD processes, all developers test their own code,
negative feelings towards testing and testers are eliminated.

• Testing is hard to manage: From a managerial perspective, it is sometimes
claimed that testing slows down the development process. Since TDD is firmly
integrated throughout the entire development process, it turns development and
testing into controlled processes. Indeed, introducing TDD might slow down
the development process in the short term simply because testing is actually
performed. In the long run, however, it assists in shortening the integration
period (especially when continuous integration is performed).

• Testing is hard: Testing is difficult mainly because it is not always clear what
tests are suitable for a specific purpose and how much testing should be done.
TDD as a detailed and explicit process, improves one's understanding of what
should be developed since the test is written prior to the writing of the code.
Ron Jeffries explains the testing activity from the cognitive perspective: "A key
aspect of this process: don't try to implement two things at a time, don't try to
fix two things at a time. Just do one. When you get this right, development
turns into a very pleasant cycle of testing, seeing a simple thing to fix, fixing it,
testing, getting positive feedback all the way. Guaranteed
flow"(http://c2.com/cgi/wiki?RonJeffries).

9.4 Summary

This chapter describes the agile approach to process and product quality.
Specifically, it analyzes the implementation of TDD form technical, cognitive,
social, affective and managerial perspectives.

9.5 References

Beck K (2003) Test-Driven Development By Example. Addison Wesley.
Cohen CF, Birkin SJ, Garfield MJ, Webb HW (2004) Managing conflict in software testing,

Communications of the ACM 47(1) 76-81
Dubinsky Y, Hazzan O (2007) Measured Test-Driven Development: Using Measures to Monitor

and Control the Unit Development. Journal of Computer Science, Science Publication 3(5)
335-344

Feathers M (2004) Working Effectively with Legacy Code. Prentice Hall.
Fowler M (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional.
George B, Williams L (2003) An initial investigation of test driven development in industry.

Proceedings of the ACM Symposium on Applied Computing, March 09-12, Melbourne,
Florida.

George B, Williams L (2004) A structured experiment of test-driven development. Information
& Software Technology 46 337–342

Mishali O, Dubinsky Y, Katz S (2008) The TDD-Guide Training and Guidance Tool for Test-
Driven Development, Int. Conf. on Agile Processes and eXtreme Programming in Software
Engineering (XP), Limerick, Ireland

Newkirk JW, Vorontsov AA (2004) Test-Driven Development in Microsoft .NET. Microsoft
Press

Van Vliet H (2000) Software Engineering – Principles and Practice. John Willey &Sons, NY,
USA

10 Learning

10.1 Overview

The agile approach fits especially for projects whose final product is not entirely
known at the project onset. Accordingly, a project development process can be
viewed as a learning process both from the customers' and team members'
perspectives. In such cases, on which we focus, at the beginning of the project,
customers do not know explicitly and entirely what their requirements of the
desired product are and improve their understanding with respect to these
requirements during the project evolution process; team members keep improving
their understanding of the customer requirements. Such processes require that an
appropriate learning environment and atmosphere be provided to all project
stakeholders. Indeed, this is another characteristic of agile environments – they
inspire and support leaning processes. This chapter explores mechanisms that
agile environments provide stakeholders of agile projects to support their learning
processes.

10.2 Agile Project from the Constructivist Perspective

Constructivism is a learning theory that examines the nature of learning processes.
A central tenet of the constructivist approach is that learners construct new
knowledge by rearranging and refining their existing knowledge. More
specifically, according to the constructivist approach, new knowledge is
constructed gradually, based on the learner's existing mental structures. Mental
structures are developed in steps, each elaborating on preceding ones, though there
may of course be regressions and blind alleys. This process is referred to by Leron
and Hazzan (1997) as "learning by successive refinement" and it is closely related
to the Piagetian mechanisms of assimilation and accommodation (Piaget 1977).
The term successive refinement itself is borrowed from computer science, where it
refers to a methodology that guides a gradual elaboration of complex programs
(Dijkstra 1972). This use of successive refinements is based on the assumption
that successive refinement is an especially effective way for the human mind, with
its particular strengths and limitations, to deal with complexity.

In what follows we present one agile practice which supports gradual
construction of knowledge. The discussion is placed on short releases and
iterations, the focus of each one is determined by the customer who prioritizes the
requirements and tasks according to his or her current preferences. It is shown
how short releases and iterations lead to improved understanding of the developed

product by the customer and team members and, consequently, they are able to
carry out the product development more confidently.

We note that the attention to the importance of learning processes in product
evolution has been increased in the past several years and is promoted also by
other approaches, such as the Lean Startup (Ries 2011), which share with agility
many common ideas. For example, one principles of the Lean Startup
methodology is validated learning.

10.3 Short Releases and Iterations

It is a known fact that customers face difficulties in determining in advance all the
required features of their desired product. In accordance with the practice of short
iterations and releases, one mechanism that the agile approach uses to guide and
support gradual understanding of the product requirements are Business Days,
which include planning and reflective sessions and are conducted frequently.
These planning sessions, and the reflective processes that accompanied them,
provide the customers with the opportunity to rethink, refine and improve their
understanding of the product they require. Consequently, customers are able to
define and communicate their requirements to the team members in a more precise
and clear manner; at the same time, team members are continuously exposed to
this improved sequence of articulations.

In addition, in each short iteration and release, the team members get feedback
with respect to their understating so far of the customer's requirements. If they
misunderstand a requirement, the customer can clarify his or her intentions; if they
do not understand a specific customer request, they have the opportunity to clarify
the customer's intention in a face-to-face interaction.

This kind of interaction is based on the realization that misunderstanding exists
in understanding customer's requirements and that an opportunity to frequently
improve and correct the understanding of what should be delivered, both by the
customer and the team members, should be provided.

From the constructivist perspective, a project process that is based on short
releases and iterations has several benefits connected to learning processes.

First, it allows both the customer and team members to focus on a relatively
small portion of the deliverables;

Second, short releases and iterations do not require dealing with future
requirements that are unknown at a specific stage, and that will probably be
clarified latter when the project evolvement proceeds;

Third, short iteration improves communication between the project
stakeholders in general and between the customer and the team in particular.
Specifically, the Business Day, which takes place after each short iteration and in
which the customer, the team and management participate, enables all project
stakeholders to gather, communicate, become familiar with the others'
perspectives at the project, express their concerns with respect to process and the

http://www.amazon.com/Eric-Ries/e/B004VIDMR0/ref=dp_byline_cont_book_1

product, and reflect on previous stages. All these activities improve the
understanding of the process and the product by all the project stakeholders as
well as their decision making processes;

Fourth, short iteration defines very clearly the time for feedback and reflective
sessions, that is - at the end of each iteration. Consequently, it is clear to all project
stakeholders that their learning process of the required product is constantly
supported;

Fifth, in addition to the lessons learned during the reflective sessions which
take place at the Business Day, the Business Days is a break which enables the
practitioners to rest and detach for a while from the demanding, complex and tight
process of agile project. When they return to their tasks for the next iteration, they
may be able to exploit their cognitive and organizational capabilities more
energetically;

Sixth, at the end of each iteration, the team presents to the customer what has
been accomplished during the last iteration and if needed, shares with the
customer misunderstandings and/or problems in the project evolution and
deliverables. This practice clearly delivers the legitimacy of raising problems and
solving them collectively. The contribution of these two activities – raising
problems and solving them collectively – to learning processes can be explained
by the constructivist perspective since mental models are shared, evaluated
discussed and examned with respect to the problem at hand.

10.4 Summary

In this chapter we focus on learning – a central element of projects whose final
product is unknown at the project onset. From the constructivist perspective, we
examined how the agile practice of short releases and iterations supports learning
processes.

10.5 References

Dijkstra EW (1972) Notes on structured programming. In Dahl, O. J., Hoare, C.A.R. and
Dijkstra, E. W. (eds.). Structured Programming, Academic Press, New-York.

Leron U, Hazzan O (1997) Computers and applied constructivism. IFIP WG g.1. Working
Conference - Secondary School Mathematics in the World of Communication Technologies:
Learning, Teaching and the Curriculum, Grenoble, France 195-203 (The proceedings’ title is:
Information and Communications Technologies in School Mathematics).

Piaget J (1977) Problems of Equilibration. In Appel MH, Goldberg LS Topics in Cognitive
Development, Volume 1: Equilibration: Theory, Research and Application, Plenum Press,
NY 3-13

Ries E (2011) The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business.

http://www.amazon.com/Eric-Ries/e/B004VIDMR0/ref=dp_byline_cont_book_1

11 Abstraction

11.1 Overview

Abstraction is a cognitive means according to which, in order to overcome
complexity at a specific stage of a problem solving situation, we concentrate on
the essential features of our subject of thought, ignoring irrelevant details (Devlin
2003; Kramer 2007). Abstraction is especially important in solving complex
problems as it enables the problem solver to think in terms of conceptual ideas
rather than in terms of their details. Though abstraction is a useful tool, it is not
always used: sometimes, it is just too difficult to think abstractly; in other cases,
abstraction is not utilized due to lack of awareness to its significance and its
potential contribution to problem solving processes. This chapter describes how
abstraction is expressed and encouraged in agile environments.

Practitioners are required to think abstractly in different situations during
project evolution. For example, when listening to customer stories, teammates are
sometimes exposed only to details and should think more abstractly in order to
mentally construct some global meaning. Further, since abstraction can be
addressed on different levels, the shift between different levels of abstraction can
also support problem solving processes. However, the knowledge of how and
when to move between different levels of abstraction does not always come
naturally, and requires some awareness. For example, a team member may remain
thinking on an inappropriate level of abstraction for too long time, while the
problem could be solved immediately should the problem be viewed on a
different, higher or lower, level of abstraction (Hazzan and Kramer 2007).

In what follows (based on Hazzan and Dubinsky 2003), we discuss abstraction
as it is manifested, either explicitly or implicitly, in agile environments in general
and, for illustration, in software projects.

11.2 Abstraction Levels in Agile Projects

Roles. The role scheme applied by agile teams can be viewed as a means that
guides software practitioners to look, think and examine the development process
on different levels of abstraction. More specifically, if a team member wishes to
perform the personal role successfully, that is, to lead the project in the direction
that the role specifies, he or she must gain a more global and abstract view at the
developed product as well as at the development process; however, when working
on a specific task, the role holder should think and work on a lower level of
abstraction. Thus, the role holder gains two mental images of the project: one
includes the details of a specific task and one encompasses a global view of a

certain aspect of the project. These two perspectives improve the role holder's
understanding of both the product and process, mutually support and complement
each other, and, further, promote abstract thinking.

Planning. The planning sessions, which take place at Business Days at the end
of each short iteration and release, direct the development process. They guide all
project stakeholders to improve their understanding of the developed product
gradually and periodically, partially by supporting a natural move between levels
of abstraction. Specifically, while the release planning sessions inspire a global
view on a higher abstraction level of the developed product, in the iteration
planning sessions, planning is conducted on a lower level of abstraction,
addressing the details of the development tasks for the next iteration as well as
their time estimation.

Stand Up meeting. Stand up meetings are conducted at the beginning of every
day (or several days according to the project characteristics). Their goal is to share
relevant information about the project as frequent as possible and to launch the
working day(s). A stand up meeting longs about 10 minutes in which each
teammates describes, in his or her turn in up to one minute, what he or she
accomplished the previous day(s) with respect to the project development, what he
or she is going to perform today, and main problems encountered, if exist.
Teammates stand during the meeting to make it short and concise. On the
individual level, the need to summarize previous and future activities requires
each team member to take a more global and abstract view than the local detailed
view needed during the actual working day; on the team level, the team gets an
overview of the project status on a daily basis and may use these frequent statues
reports to mentally construct an abstract image of the project.

Refactoring. Refactoring (Beck 2000; Fowler 1999; Highsmith 2002), or
redesign, means that the software design is improved without adding functionality.
Refactoring is based on the current design and it attempts to simplify it and ease
the introduction of future changes.

Since the practice of refactoring encourages programmers to keep improving
code structure and readability without adding functionality to the code, refactoring
is a continuous and gradual process of code improvement. More specifically, since
the final structure of the code and design cannot be predicted in advance,
refactoring serves as a tool that leads and supports the team members in a gradual
process of code and design improvement.

Refactoring is considered to be a complex cognitive activity that people face
difficulties to accomplish. This difficulty can be explained by the need to think on
the developed product on a high level of abstraction, which is considerably
sophisticated than the level of abstraction on which code is written or designed.

The inclusion of refactoring as an agile practice delivers a clear message: it is
legitimized to stop from time to time the development process of new tasks and to
allocate time for code improvement. Further, in practice, when a need for an
extensive refactoring is acknowledged, agreed upon and approved by the
customer, time is allocated for refactoring in the next iteration, and the same
activities conduced with respect to code development, such as breaking down and

time estimation, are conducted with respect to refactoring. As it turns out, the
investment in refactoring, which results in clean, clear and easy-to-change code, is
returned in future development and maintenance activities.

11.3 Summary

In this chapter we focus on abstraction and present agile practices that guide
abstract thinking in general and the transition between abstraction levels in
particular. One of the main messages of this chapter is that the shift between levels
of abstraction increases stakeholders' understanding of the project process and
product.

11.4 References

Beck K (2000) Extreme Programming Explained. Addison-Wesley.
Devlin K (2003) Why universities require computer science students to take math.

Communications of ACM 46 9 37–39
Fowler M (1999) Refactoring – Improving the Design of Existing Code. Addison-Wesley.
Hazzan O, Dubinsky Y (2003) Bridging cognitive and social chasms in software development

using Extreme Programming. Proceedings of the Fourth International Conference on eXtreme
Programming and Agile Processes in Software Engineering, Genova, Italy 47-53

Hazzan O, Kramer J (2007) Abstraction in computer science & software engineering: A
pedagogical perspective. Featured Frontier Columnist, System Design Frontier - Exclusive
Frontier Coverage on System Designs, 4(1) 6-14

Highsmith J (2002) Agile Software Development Ecosystems. Addison Wesley.
Kramer J (2007) Is abstraction the key to computing? Communication of the ACM 50(4) 37-42

12 Trust

12.1 Overview

This chapter focuses on how trust is fostered by agility. The basic notion
addressed in this chapter is the transparency of agile environments and how it
increases trust among team members. Such an environment, in which trustful
relationships exist, enhances ethical behavior and diversity. Relationships between
agile processes, trust, ethics and diversity are laid out in this chapter as well.

12.2 Process Transparency

Project processes tend to be not-transparent, especially in cases when the project
deliverables are intangible, e.g., an assimilation project of a new medical
regulation in a hospital or a development project of a new software application.
Specifically, the project status is not always known and it is not always clear if
each team member has accomplished his or her tasks. Therefore, in such
environments it may be difficult to construct trust. This section illustrates how
basic agile concepts increase project visibility, turning the project process to be
more transparent (Hazzan 2007) and consequently, to foster trust among project
stakeholders.

Short releases and iterations. The actual and detailed plan of the short
releases and iterations is executed in planning sessions, in which all relevant
parties participate – customer, team members, management representatives, and so
on. This activity, which usually takes about half a day, includes a presentation of
what was developed in the previous iteration along with any relevant measures
taken, a reflective session, and the planning of the next iteration. In the reflective
session, the development process performed so far is analyzed and implications
for the future are discussed and agreed upon. At the end of the day, a balanced
workload is ensured among all team members. Clearly, the participation of all
project stakeholders in this day, the nature of the activities that take place during
the day, and the fact that it takes place every two weeks (or so), all increase the
process visibility and make it more transparent.

Time estimations. In agile environments, the teammate who is in charge of a
specific task also estimates the time needed for its accomplishment. Not only
teammate's responsibility to perform well is increased, but also, this practice
enhances process transparency since all teammates know what each practitioner
has committed to in terms of time estimations.

Customer involvement. In agile environments, all team members have direct
access to the customer during the entire project process. Clearly, this direct

communication channel enhances both the process transparency and the chances
that the product requirements are communicated correctly.

12.3 Ethics

Codes of ethics guide professionals how to behave in vague situations in which it
is not clear what is right and what is wrong. The need for a code of ethics arises
from the fact that any profession generates situations that can neither be predicted
nor be answered uniformly by all members of the relevant professional
community. In this section we examine how agile environments foster ethical
behavior in the case of software projects.

There are many ethical issues related to information technology, computing
and technology. To address this reality, the ACM/IEEE-CS Joint Task Force
defined the Software Engineering Code of Ethics and Professional Practice
(Version 5.2). Its short version is presented in what follows (for the full version
look at http://www.acm.org/about/se-code).

The Software Engineering Code of Ethics and Professional Practice - Short
Versioni

Software Engineering Code of Ethics and Professional Practice
ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and

Professional Practices
Short Version
PREAMBLE

The short version of the code summarizes aspirations at a high level of the
abstraction; the clauses that are included in the full version give examples and details of
how these aspirations change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and tedious; without the
details, the aspirations can become high sounding but empty; together, the aspirations
and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification,
design, development, testing and maintenance of software a beneficial and respected
profession. In accordance with their commitment to the health, safety and welfare of the
public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
3. PRODUCT - Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.
4. JUDGMENT - Software engineers shall maintain integrity and independence in

their professional judgment.
5. MANAGEMENT - Software engineering managers and leaders shall subscribe to

and promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their
colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the
practice of their profession and shall promote an ethical approach to the practice of the
profession.

We review two sections of the above code of ethics from the perspective of

agility.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
This section of the code of ethics is fostered by agile processes by the close

interaction between the team members and the customer. Specifically, the facts
that the customer is in close interaction with the team and that all project
stakeholders hear the customers' requirements, further support the enhancement of
this section of the code of ethics.

4. JUDGMENT - Software engineers shall maintain integrity and independence in
their professional judgment.

Integrity is maintained in agile environments by encouraging agile team
members to raise problem they encounter, to discuss dilemmas, and to express
their concerns. Several opportunities are provided to agile team members for such
articulations, such as reflective sessions and stand up meetings.

In general, since agile processes are transparent, ethical behavior is encouraged

and fostered. This is because behaviors are more seeable and consequently, ethical
behavior is more easily accepted and norms can be set and adhered.

12.4 Diversity

Diversity can be expressed in different ways, such as nationalities, genders,
minorities, cultures, and life styles. Diversity can also be expressed with respect to
internal characteristics, such as worldviews, hobbies, skills, and thinking styles.

In general, studies tell us that no matter how diversity is expressed, it benefits
and enhances societies that foster it (e.g., Florida 2002, Hazzan and Dubinsky
2006). Diversity is also perceived as a powerful managerial practice (Thomas
2004) due to its added value to problem solving processes and the need to address
international markets.

At the same time, however, and mainly with respect to social and ethnic
diversity, resistance is sometimes expressed towards diversity. The main argument
presented is that people tend not to trust people who are different than them (e.g.,
Smith 2001, 2007). According to (Austin 1997) "there may be an optimal level of

diversity that will stimulate creative thinking within a group, and the relationship
between group diversity and creativity may be curvilinear.” (p. 342). Accordingly,
Austin suggests that organizations increase their awareness to disagreements that
may stem from diversity.

So far we saw how the transparent nature of agile environments fosters trust

and ethical norms. Within such conditions, diversity can also flourish. This is
because when trust is increased, team members are more open to new ideas and
perspectives in general, and in particular, to diversity.

Specifically, diversity is enhanced in agile environments in several ways. For
example, the role scheme enables each team member to express his or her
perspective at the process and product and to influence both of them; the
participation of all project stakeholders in the planning sessions, as well as in the
reflective sessions, enhances the contribution and expression of different opinions.

In turn, agile teams may benefit from this enhanced diversity in several ways.
First, the more diverse a team is, the more wide-ranging perspectives are

elicited; consequently, teammates are exposed to others' perspectives, and are able
to use these different points of view in different new (problem solving) situations.

Second, the project deliverable itself may be improved because when different
perspectives are expressed with respect to a specific aspect of the deliverable, the
chances that subtle issues will emerge are higher; consequently, additional factors
are considered when decisions related to the said deliverable are taken.

Third, the entire process is more questioned when diverse opinions are
expressed, and, once again, the team may get a more argument-based process.

Fourth, diversity reduces resistance to new ideas and establishes an open
atmosphere towards alternative opinions.

Finally, since more and more companies become global, diversity is becoming
an integral characteristic of teams and, therefore, cannot be neglected. I is just
natural to assume that a team, which welcomes diversity, may assimilate its
behavior in this global market more naturally and successfully.

12.5 Summary

This chapter binds ethics and diversity under the notion of trust. It is explained
how agile environments increase trust by establishing a transparent environment.
In this transparent environment, ethical behavior and diversity can flourish and, in
turn, foster back and enhance the agile process and the evolved product.

12.6 References

Austin JR (1997) A cognitive framework for understanding demographic influences in groups.
International Journal of Organizational Analysis 5(4) 342-359

Florida R (2002) The Rise of the Creative Class. Basic Books
Hazzan O (2007) Agile Software Development and the Nature of Software Development.

Featured Frontier Columnist, System Design Frontier - Exclusive Frontier Coverage on
System Designs 4(3) 28-32

Hazzan O. and Dubinsky Y. (2006). Can diversity in global software development be enhanced
by agile software development? International Conference of Software Engineering, ICSE,
International Workshop on Global Software Development for the Practitioner (GSD),
Shanghai, China

Smith MK (2001, 2007) 'Robert Putnam', the encyclopedia of informal education.
www.infed.org/thinkers/putnam.htm. Last update: November 05, 2007.

Thomas D (2004) Diversity as strategy. Harvard Business Review 98-108
http://www.gpworldwide.com/quick/sep2004/art2.asp

http://www.gpworldwide.com/quick/sep2004/art2.asp

13 Globalization

13.1 Overview

Globalization is usually related to time, distance, and culture.
Referring to time, we cite Friedman’s book The World is Flat: “… That's

globalization," said Nilekani. Above the screen there were eight clocks that pretty
well summed up the Infosys workday: 24/7/365. The clocks were labeled US
West, US East, GMT, India, Singapore, Hong Kong, Japan, Australia” (Friedman
2005, p. 6).

Referring to distance, a physical distance between teams, which work together
on one product, increases the process complexity. It is further claimed that even a
fifty meters distance can be considered as a distributed environment (Allen 1984
in Sangwan et al. 2007).

Referring to culture, this concept has been explored extensively with respect to
different kinds and sizes of groups like nations, tribes, and teams. We define the
concept of culture as a set of explicit and implicit norms, values and beliefs,
shared by the practitioners in a group to which they belong that, on the one hand,
influences directly the practitioners' daily activities, behaviors and interactions,
and on the other hand, is fed back by these activities, behaviors and interactions
and is shaped by them. The culture of a specific team is influenced by the culture
of the nation as well as the organizational culture. Both are relevant for global
environments.

In this chapter we address globalization as it is expressed by agile teams and,
present cultural issues related to software projects and development methodology.
As it will be seen, the agile approach offers solutions for such challenges.

13.2 Agile Global Product Development

Global software development refers to distributed teams who work together on
one product development (Carmel et al. 2010; Herbsleb et al. 2001; Sahay et al.
2003; Sangwan et al. 2007). The motivation for such setting usually stems from
the need to use the organization resources cost-competitively and the need to
shorten time to market by ‘around the clock’ development.

The following description is our expansion of 'agile global and distributed
software development' to 'agile global and distributed product development',
which delivers the message that agility can be applied also to other distributed
projects, not necessarily software. Since the developed product of distributed
teams includes also its delivery between the project sites, it seems that the
description fits especially the development of intangible products that can be

delivered electronically between the project sites to enable ‘around the clock’
progress.

In general, agile distributed teams adhere to the notion of communication by a)

setting the resources and procedures needed for fruitful communication, including
its tracking, and b) deciding on communication facilitator, channels, and
measures. Specifically, Sangwan et al. (2007) suggested that the communication
among distributed teams should be adequate, not too minor and not overwhelmed,
and, in any case, should be measured.

Teams should be synchronized in order to develop a high quality product, and
therefore, in distributed teams, the planning activity serves also for coordination
and synchronization purposes. Different techniques and tools are suggested for the
planning activity of projects developed in distributed environments. (Cusick and
Prasad, 2006) present some recommendations, emerged from the experiences with
many global non-agile projects, that fit also agile environments as well. For
example, “Limit phase durations to keep control. Shorter phases are easier to track
and manage. Track all issues assiduously. Require interim deliveries to ensure
quality.”

Reflection is also one of the most important tools to control and improve
performances in distributed environments. It provides teammates with a medium
to talk about problems and discuss main concerns. Further, it highlights
information about the process and enables to accommodate improvements in order
to reduce some of the frustration felt sometimes by practitioners in distributed
environments.

13.3 Software Projects and Culture

Connections between software development methods and cultural issues have
been discussed (Yourdon, 1997; Sawyer and Guinan, 1998). For example,
according to Moore (2000), there are four basic organizational cultures:
cultivation, competence, collaboration, and control, to which he matches one of
three methodology categories: rigorous (RM), agile (AM), or ad hoc or no
methodology (NM).

A cultivation culture is motivated by self-realization and can be illustrated by
Silicon Valley start-up companies, to which fits the NM category. Lean Startup
(Ries, 2011) is a more recent methodology, which shares with agility many
common ideas, and has been designed especially for coping with challenges that
characterize startups companies.

A competence culture is driven by the need for achievement; collaboration
cultures are driven by a need for affiliation, and control cultures are motivated by
the need for power and security. Naturallly, the agile approach fits the competence
and the collaboration cultures, the RM fits the control culture.

http://www.amazon.com/Eric-Ries/e/B004VIDMR0/ref=dp_byline_cont_book_1

Highsmith (2002) adds another dimension and associates each methodology to
a specific product development phase. According to Highsmith, while the NM
approach fits the initial phases of product development, at later stages, when close
interaction with customers is required, the AM approach fits better. During the
Main Street market phase, the RM approach fits in the best.

13.4 Summary

This chapter focuses on globalization and agile distributed team. We suggest that the
agile approach fits global development due to its visibility, transparency and
tightness characteristics that contribute to co-located teams and therefore, and maybe
furthermore, fits for distributed ones.

13.5 References

Allen TJ (1984) Managing the Flow of Technology: Technology Transfer and the Dissemination
of Technological Information within the R&D Organization. MIT Press, Cambridge, MA.

Carmel E, Espinosa J.A., Dubinsky Y (2010) “Follow The Sun” Workflow In Global Software
Development, Journal of Management Information Systems (JMIS) 27(1), 17-38

Cusick J, Prasad A (2006) A Practical Management and Engineering Approach to Offshore
Collaboration. IEEE Software, 20-29

Friedman TL (2005) The World Is Flat: A Brief History of the Twenty-First Century. Farrar,
Straus and Giroux.

Herbsleb JD, Mockus A, Finholt TA, Grinter R (2001) An Empirical Study of Global Software
Development: Distance and Speed. In Proceedings of the 23th International Conference on
Software Engineering (ICSE), IEEE Computer Society Press, Los Alamitos, CA.

Highsmith J (2002) Agile Software developments Ecosystems. Addison-Wesley.
Moore GA (2000) Living on the Fault Line: Managing for Shareholder Value in the Age of the

Internet. New York: HarperBusiness.
Ries E (2011) The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. Crown Business.
Sahay S, Nicholson B, Krishna S (2003) Global IT Outsourcing: Software Development Across

Borders. Cambridge University Press.
Sangwan R, Bass M, Mullick N, Paulish DJ, Kazmeier J (2007) Global Software Development

Handbook. AuerBach Publications, Taylor and Francis Group.
Sawyer S, Guinan PJ (1998) Software development: Processes and performance. IBM Systems

Journal 37(4) http://www.research.ibm.com/journal/sj/374/sawyer.html
Yourdon E (1997) Death March: The complete software developer's guide to surviving "mission

impossible" projects. N.J.: Prentice Hall PTR.

http://www.amazon.com/Eric-Ries/e/B004VIDMR0/ref=dp_byline_cont_book_1

14 Reflection

14.1 Overview

Reflective thinking is a skill used by people in different situations. It is especially
valuable in general-purpose projects, in learning processes, and definitely in
complex development processes (Schön 1987; Hazzan 2002). This chapter focuses
on the nature of reflective processes in agile environments on the individual level
(reflection) and on the team level (retrospective). While reflection provides the
individuals feedback with respect to how they perceive different aspects of the
process and product, retrospective elevates these thoughts to the team level.

14.2 Reflective Practitioner Perspective

Reflection is the process according to which an individual examines his or her
actions during the accomplishment of a task or after the task has been
accomplished. Though reflection is not a new concept, its common practice has
been boosted after Schön had published his two books The Reflective Practitioner
in 1983 and Educating the Reflective Practitioner in 1987 (Schön 1983, Schön
1987). In order to become a reflective practitioner, one should keep reflecting on
his or her accomplishments, activities and behaviors. Schön's books advocate the
idea that a person who keeps reflecting becomes a reflective practitioner, a
position which enables him or her to keep improving his or her professional skills.

Generally speaking, the reflective practitioner perspective (Schön 1983,
1987) guides professional practitioners (such as architects, managers, musicians
and others) towards examining and rethinking their professional creations during
and after the accomplishment of the process of creation. The working assumption
is that such a reflection improves both proficiency and performance within such
professions. Analysis of the agile approach supports the adoption of the reflective
practitioner perspective to software engineering processes (Hazzan 2002; Hazzan
and Tomayko 2003). Specifically, a reflective mode of thinking may improve the
performance of some of the agile practices.

Thought the importance of reflective processes is acknowledged by many
professions, it is not always done if time is not specifically allocated and dedicated
for this process. Accordingly, since the agile approach acknowledges the
importance of reflective processes, it allocates specific time slots for their
accomplishments. One time slot is a retrospective that usually takes place at the
end of the release.

14.3 Retrospective

Retrospective is a reflective session that takes place on the team level, usually
during long sessions (from one hour to several days). In retrospectives, in addition
to personal reflective processes, the team, as a whole, facilitates reflective
thinking to derive lessons from its past experience.

Though the concept of retrospective usually refers to long sessions that take
place at the end of the release, we adopt this notion for any team gathering (such
as the end of the iteration meetings) whose aim is to reflect on the team
performances in order to improve the process and product. We note that the term
team may encompass also, if needed, the customer, the management and other
project stakeholders.

In retrospective sessions, each team member shares his or her reflection with
the other participants in order to improve the team performances, and
consequently, the process and product quality. Accordingly, communication and
feedback are important in retrospective sessions and should be enhanced.

Since other kinds of tasks are not accomplished during the retrospective
session, the mere existence of retrospective sessions delivers a clear message
about their importance. This message is based on the anticipated contribution of
the retrospective sessions to future performances and to the product and process
quality. In other words, it is assumed that the invested time in the retrospective
sessions is returned in improved product and process quality.

14.4 The Retrospective Facilitator

Each retrospective session should be facilitated by a moderator. One option is to
invite a facilitator who is not part of the team. Another option is to assign one of
the team members to be the retrospective facilitator. Teams which facilitate
retrospective session on a regular basis can either add the role of Retrospective
Facilitator to the role scheme, or add this responsibility to one of the other roles in
the team. Alternatively, the Retrospective Facilitator role can be rotated between
the team members. It is recommended that the retrospective facilitator knows how
to facilitate retrospective processes; nevertheless, even if none of the team
members is familiar with guiding retrospective processes, the team can dedicate
the needed time for a gradual improvement of its retrospective sessions in the
spirit of constructivism.

The role of the retrospective facilitator includes the selection of a subject for
the retrospective, in coordination with the team leader, and the actual facilitation
(including time keeping) of the retrospective meeting itself. During the
retrospective, the facilitator should give special attention to the fact that all the
participants are active and highly communicative.

14.5 Guidelines for a Retrospective Session

The following guidelines were formulated by a software team for its retrospective
sessions that take place at each of its Business Day (Talby et al. 2006).

• Only one specific problem is discussed at each retrospective meeting.
• The discussed problem should relate to the project process, less to its product.
• The subject is chosen in advance by the moderator (after informal/formal

consultation with other team members), and presented at the beginning of the
retrospective meeting.

• The retrospective do not exceed one hour.
• The whole team is required to attend the retrospective.
• Everyone is proactively encouraged to speak, but is not required to do so.
• Team members are encouraged to speak their own opinions.
• The moderator records important insights and proposes action items that

surface during the meeting.
• The moderator publishes the main insights and action items to the team soon

after the retrospective.
• The decided action items are effective immediately; these are changes in the

day-to-day team operations that should reduce the debated problem.

14.6 Application of Agile Practices in Retrospective Sessions

This section presents several facilitation guidelines for retrospective sessions in
agile environments. These guidelines deliver the message that when a
retrospective session takes place in an agile project, the retrospective itself should
also be performed in the spirit of agility, and accordingly, for example, it should
foster diversity, support learning processes and include the whole team, as is
illustrated in what follows.

Time allocation. As with other activities, time should be allocated for the
retrospective session as well.

Whole team. Everyone who belongs to the team should participate in the
retrospective. Also, it is recommended that the team will take an active part in the
preparation of the retrospective as well as during it and after it, when the decided
upon lessons are implemented.

Abstraction. During the retrospective meeting, it is recommended to address
the discussed topics on different levels of abstraction – from conceptual ideas to
practical activities and measures – and vise versa. Further, it is recommended to
highlight this movement between abstraction levels to enable the participants
exploit also cognitive benefits from this mental activity.

Measures. It is important to accompany the application of each decision
made in a retrospective session by a measure that, first, will enable to observe
whether or not the decision itself is applicable, and second, to examine its actual
performance and contribution to the process.

14.7 End of the Release Retrospective

This section suggests a framework for the end of the release retrospective. The
framework should be adjusted for each specific team's and project's needs. For
additional details about the facilitation of retrospective session with software
teams, see Kerth's book Project Retrospective (Kerth 2001).

Place. It is recommended to facilitate the release retrospective out of the
project site. The idea behind this recommendation is to disconnect the
practitioners from their on-going work in order to enhance reflective thinking and
to deliver the message that the retrospective is important at least as the direct work
on the project itself. This importance is highlighted by allocating a special time
and place framework for the retrospective session, as is done for other kinds of
tasks.

Length. For a retrospective that takes place at the end of the release, in which
the team wishes to get a comprehensive picture and understanding of the release, a
longer period of time should be allocated. The longer period of time gives the
team a timeout before the next release starts. Therefore, two days seems to be an
optimal period.

Participants. The retrospective participants should be determined according
to the retrospective's target, team climate and dynamics, the project stage and the
lessons learned in previous retrospective sessions. When a specific decision is
made with respect to the group of participation, its rational should be shared with
all project stakeholders.

Topic(s). In order to address most of the team members' concerns in the
retrospective, it is recommended to select the retrospective subject(s) a-priori from
a list generated by the team, and is accessible to everyone. Such topic selection
process has several advantages. First, the subject is relevant for at least several
team members; second, it is reasonable to assume that a topic selected in this way
would be connected to the daily project life; third, time is not spent in the
retrospective meeting to decide on the subject on which the retrospective will
focus; fourth, such a selection process increases the environments transparency.
Yet, in some cases, the team leader or a project manager may suggest topics which
were not selected democratically. From the suggested list of topics, it is
recommended to select topics that different opinions have been expressed with
respect to them and to avoid the selection of a topic that involves personal quarrels
and accusations.

Preparation. The participants should be encouraged to bring to the
retrospective session ideas, event descriptions, measures and personal stories
related to the retrospective topics.

To encourage the participants to start preparing themselves to the
retrospective, they can be invited to bring into the retrospective one positive
experience they experienced during the release and one experience they have bad
feeling about. The retrospective facilitator, on his or her side, should be aware to
the different concerns that the practitioners bring into the retrospective.

Global planning should be constructed accordingly; yet, some freedom level
should be left to enable the accommodation of the retrospective timetable
according to participants' needs and unexpected events that may come up in the
retrospective.

Organization. As in agile processes, it is recommended to base the
retrospective session on cycles, each of them includes a trigger (explained
bellow), a group activity, a discussion and a summary.

If the retrospective participants break into sub groups for different activities,
the sub groups' members should be modified for each activity in order to allow all
the retrospective participants interact with many as possible other participants.
The gathering of all the retrospective participants after group activities, in which
the groups report on their conclusion to the entire retrospective milieu and a
discussion is facilitated, is an important element and should not be skipped.

Trigger. A trigger is a means that fosters thinking on open topics. A well
selected trigger can open the participants' horizons to new ideas and enable them
to communicate their ideas with respect to the discussed topics from new
perspectives. There are different kinds of triggers. Since they vary in the time it
takes to facilitate them, the retrospective facilitator should select them according
to the target of the retrospective and the available time. Among many options,
movies can serve as triggers. For example, a movie about a leader or about a
natural phenomenon can serve as a trigger that stimulates interesting discussions.
After the movie is watched, similarities and differences between what is seen in
the movie (that is taken from another world) and what happens in the project
environment can be discussed. This is of course only one option. Movies are good
triggers for retrospective sessions since they encourages diversity by enabling
each team member to think and connect what he or she watches to his or her
personal and professional life experience.

14.8 Summary

This chapter looks at the contribution of reflective processes – reflection and
retrospective – to agile processes. We emphasize that these practices should be
addressed as other kinds of tasks are treated in agile environments, that is, with
specific time allocation and the application of agile practices.

14.9 References

Hazzan O (2002) The reflective practitioner perspective in software engineering education. The
Journal of Systems and Software 63(3) 161-171

Hazzan O, Tomayko J (2003) The reflective practitioner perspective in eXtreme Programming.
Proceedings of XP Agile Universe, New Orleans, Louisiana, USA 51-61

Kerth NL (2001) Project Retrospectives: A Handbook for Team Reviews. Dorset House Publishing
Company

Schön DA (1983) The Reflective Practitioner. BasicBooks.
Schön DA (1987) Educating the Reflective Practitioner: Towards a New Design for Teaching

and Learning in The Profession. Jossey-Bass, San Francisco.
Talby D, Hazzan O, Dubinsky Y, Keren A (2006) Reflections on reflection in agile software

development, Proceedings of the Agile Conference, Minneapolis, Minnesota, USA 100-110

i Copyright (c) 1999 by the Association for Computing Machinery, Inc. and the Institute for

Electrical and Electronics Engineers, Inc.
It is explicitly specified in the Code website that it may be published without permission as

long as it is not changed in any way and it carries the copyright notice.

	8 Measures
	8.1 Overview
	8.3 Who Decides What is Measured?
	8.5 When are Measures Taken?
	8.6 How are Measures Taken?
	8.7 Who does Take Measure?
	8.8 How are Measures Used?
	8.9 Illustration for the Case of a Software Project
	Fig. 8.1. Size measure during the release
	Fig. 8.2. Pulse measure during the release
	8.10 Summary
	8.11 References

